SMC Bulletin

A Publication of the Society for Materials Chemistry

SOCIETY FOR MATERIALS CHEMISTRY

Society for Materials Chemistry

Society for Materials Chemistry was mooted in 2007 with following aims and objectives:

- (a) to help the advancement, dissemination and application of the knowledge in the field of materials chemistry,
- (b) to promote active interaction among all material scientists, bodies, institutions and industries interested in achieving the advancement, dissemination and application of the knowledge of materials chemistry,
- (c) to disseminate information in the field of materials chemistry by publication of bulletins, reports, newsletters, journals.
- (d) to provide a common platform to young researchers and active scientists by arranging seminars, lectures, workshops, conferences on current research topics in the area of materials chemistry,
- (e) to provide financial and other assistance to needy deserving researchers for participation to present their work in symposia, conference, etc.
- (f) to provide an incentive by way of cash awards to researchers for best thesis, best paper published in journal/national/international conferences for the advancement of materials chemistry,
- (g) to undertake and execute all other acts as mentioned in the constitution of SMC.

Executive Committee

President Dr. S. K. Sarkar Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 sarkarsk@barc.gov.in

Vice-Presidents Dr. V. K. Jain Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 jainvk@barc.gov.in

Prof. Sandeep Verma Indian Institute of Technology Kanpur sverma@iitk.ac.in

Secretary

Dr. P. A. Hassan Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 hassan@barc.gov.in

Treasurer

Dr. Sandeep Nigam Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 snigam@barc.gov.in

Members Dr. K. Ananthasivan Indira Gandhi Centre for Atomic Research Engineering Research Institute, Nagapur Kalpakkam, 603102

Dr. (Smt.) A. Banerjee Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. K. Bhattacharya Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. D. Das Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. G. K. Dey Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. P. Sujata Devi CSIR Central Glass & Ceramic Research Institute, Kolkata-700032

Dr. C. P. Kaushik Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. T. Mukherjee Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. M. C. Rath Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. (Smt.) S. S. Rayalu CSIR National Environmental

Prof. S. D. Samant Institute of Chemical Technology Mumbai

Dr. A. K. Tyagi Bhabha Atomic Research Centre Trombay, Mumbai-400085

Dr. R. K. Vatsa Bhabha Atomic Research Centre Trombay, Mumbai-400085

Co-opted Members

Prof. A. Ajayaghosh CSIR - National Institute for Interdisciplinary Science and Technology Thiruvananthapuram ajayaghosh@niist.res.in

Prof. A. K. Ganguli Director, Institute for Nanoscience and Technology ashok@chemistry.iitd.ermet.in

Prof. S. Ram Indian Institute of Technology - Kharagpur sram @ matsc.iitkgp.ernet.in

Dr. A. K. Tripathi Bhabha Atomic Research Centre Trombay, Mumbai-400085 catal@barc.gov.in

Contact address Society for Materials Chemistry C/o Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India Tel: +91-22-25592001, E-mail: socmatchem@gmail.com

SMC Bulletin

A Publication of the Society for Materials Chemistry

Volume 5

No. 2

August 2014

SOCIETY FOR MATERIALS CHEMISTRY

SMC Bulletin

Vol. 5

No. 2

August 2014

Guest Editors

Dr. Mrinal R. Pai Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 e-mail: mrinalr@barc.gov.in

Shri A. Shriniwas Rao Chemical Technology Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 e-mail: sriniwas@barc.gov.in

Editorial Board

Dr. Arvind Kumar Tripathi

Chemistry Division Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 e-mail: catal@barc.gov.in

Dr. Manidipa Basu

Chemistry Division Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 e-mail: deepa@barc.gov.in

Dr. Shyamala Bharadwaj Chemistry Division

Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 e-mail: shyamala@barc.gov.in

Dr. Aparna Banerjee Product Development Division Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 e-mail: aparnab@barc.gov.in

Dr. Sandeep Nigam Chemistry Division Bhabha Atomic Research Centre Trombay, Mumbai, 400 085 e-mail: snigam@barc.gov.in

Published by

Society for Materials Chemistry C/o. Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 E-mail: socmatchem@gmail.com, Tel: +91-22-25592001

Please note that the authors of the paper are alone responsible for the technical contents of papers and references cited therein

Front cover shows images from L-R clockwise 1. Schematic of hydrogen technology, 2. Photocatalytic hydrogen evolution, 3. Sulfuric acid decomposer in closed glass loop of I-S process and 4. SEM micrograph of oxide catalyst developed for I-S thermochemical cycle.

Guest Editorial

Mrinal R. Pai

A. Shriniwas Rao

It is our pleasure to be associated with SMC and particularly this issue of "Materials for Hydrogen Energy" as guest editors. We thank SMC for giving us this responsibility and hope that justice is done by us.

Beyond doubt, earth is getting warmer due to increasing carbon dioxide levels and definite climate change is being felt. According to IPCC, Intergovernmental Panel on Climate Change – a premier international scientific body established by United Nations, atmospheric concentration of carbon dioxide has crossed 400 ppm which is the highest in at least last 800,000 years. To limit and reduce CO_2 concentrations renewable energy source such as Hydrogen is to be extensively put to use.

Various options for generation and storage of hydrogen are available. But different ways of hydrogen production devoid of CO_2 generation are crucial and being researched world over, so also in our country. They are electrolytic, photolytic and thermal routes where energy source is either from renewable or from non-fossil fuel. Storage of hydrogen with high weight percent is being extensively researched though high pressure cylinders usage is prevalent.

Here in this bulletin we present articles on different approaches followed worldwide for hydrogen generation and storage. Topics ranging from hydrogen generation by S-I and Cu-Cl themochemical cycles, photocatalytic, photoelectrochemical processes, hydrogen storage in carbon based as well as metal hydride systems and various other processes relevant to hydrogen energy are covered. We thank all authors from different institutes for sharing their knowledge, expertise and scientific data in form of contributed articles in the present bulletin.

The next issue of the Society of Materials Chemistry Bulletin is proposed to be on "Supramolecular Materials".

Readers are encouraged to give their feedbacks at email id. socmatchem@gmail.com

From the desks of the President and Secretary, Society of Material Chemistry

President

Secretary

Greetings for the festive season from the Executive Council of SMC.

Since its inception, SMC has been actively involved in publishing theme based bulletin issues which serve as a platform to highlight the advances made in the field of materials chemistry and also encourage young researchers/academicians to join our fast growing society having more than 800 members. During the past few months, our efforts have been focused on the preparation for conducting the fifth Interdisciplinary Symposium on Materials Chemistry (ISMC-2014) to be held at Anushaktinagar during December 9 – 13, 2014. It is really a pleasure to bring this special issue on "Materials for Hydrogen Energy" on the eve of ISMC-2014. We would like to put on record our sincere thanks to the Guest Editors Dr. Mrinal R. Pai, Chemistry Division and Sh. Shriniwas A. Rao, Chemical Technology Division for taking keen initiative and efforts to bring out this issue.

Providing an abundant, clean, and secure renewable energy source is one of the key technological challenges facing mankind. Resurgence in the chemistry and biochemistry of hydrogen, the world's simplest closed-shell molecule, has been spurred by recent scientific and technological interest in hydrogen as an energy carrier and potential transportation fuel. A number of key challenges must be overcome for hydrogen to be used broadly in a sustainable future energy infrastructure to solve the globe's energy problems. The current platforms for hydrogen production are largely based on fossil fuels, are relatively energy inefficient, and lead to the emission of significant quantities of greenhouse gases.

Scientific advances are needed to develop more energy efficient and cost-effective methods for purification and delivery, to design higher energy density hydrogen storage systems, especially for vehicular on-board storage, and to enable more durable fuel cells for converting hydrogen into electrical energy. Despite its high gravimetric energy density, hydrogen, even in liquid form, has a low volumetric energy density compared to other transportation fuels, so on-board storage of hydrogen remains a critical technical barrier for widespread hydrogen-based transportation. Governments and industries, particularly in the United States, Japan, and Europe, have been investing heavily in R & D to overcome the technical barriers for hydrogen production, storage, and utilization to enable a sustainable future energy infrastructure based on hydrogen. This thematic issue on Hydrogen aims to capture the excitement of recent advances in hydrogen production, storage, and utilization by providing a broad overview of the current state of our scientific understanding of the pertinent chemistry. It is simply not possible to capture all the advances and aspects of the scientific challenges in a single issue, but we believe that the cross section provided by the articles will be of interest to a broad audience. We hope that the excellent articles in this thematic issue will inspire many scientists, in particular the younger generation, to become involved with this important topic and energy related fields in general.

CONTENTS

	Feature articles	Page No
1.	Hydrogen Storage Possibilities in Carbon Materials <i>B. Viswanathan and A. Ariharan</i>	1
2.	Application of Metal Hydride Systems for Hydrogen Storage Seemita Banerjee, Priyanka Ruz, Asheesh Kumar, C. G. S. Pillai	8
3.	Material Challenges in Renewable Hydrogen Production A.M. Banerjee, M.R. Pai, A.K. Tripathi and S.R. Bharadwaj	17
4.	Materials of Construction for Iodine – Sulfur Thermochemical Process H. Z. Fani, S. Sujeesh, V. Nafees Ahmed, A. Shriniwas Rao, A. Sanyal	30
5.	Application of Membrane Technology in IS Thermochemical Cy <i>Nitesh Goswami, A. K. Singha, Soumitra Kar, R.C. Bindal, P.K. Tewari</i>	cle 35
6.	An Overview of Material Requirements for Copper-Chlorine Thermochemical Cycle: ONGC Energy Centre Perspective <i>D. Parvatalu</i>	43
7.	Design of Photoelectrohemical Materials Via Non-Native Nanostructures and their "Click" Assembly into Photoreactor <i>Dilip Kumar Behara, Sulay Saha, R. Babu, Malay Kumar Das,</i> <i>Sri Sivakumar and Raj Ganesh S Pala</i>	49
8.	Recent Trends in Material Development for Photoelectrochemical route of Solar Hydrogen Production <i>Sahab Dass, Vibha Rani Satsangi and Rohit Shrivastav</i>	59
9.	List of Life Members	65

1

Hydrogen Storage Possibilities in Carbon Materials

B. Viswanathan and A. Ariharan

National Centre for Catalysis Research Indian Institute of Technology-Madras, Chennai 600 036

Abstract

Reported results on hydrogen storage in carbon materials have been a subject of controversy. The central point of this controversy is the storage capacity and also the activation centres in equipotential carbon surfaces. Incorporation of hetero atoms like B, N, P, and S in carbon lattice can possibly provide the necessary centres for the activation of hydrogen in either dissociated or quasi molecular form with increased bond length. The proposed model may account for the predicted storage capacity and can possibly direct towards the design materials for this purpose.

Introduction

The transition to hydrogen based economy depends on three essential factors, namely production, storage and distribution. There are many options available for each of these three factors. In this, the option for storage should at least satisfy two of the essential criteria namely the hydrogen storage density must be as high as possible and the accessibility of hydrogen must be as easier as possible. Taking these factors into consideration, the Department of Energy (DOE) has come out with some expected standards of hydrogen storage capacity and has been frequently modifying these figures based on the developments that have taken place. One of these DOE stipulated standards is given in Table 1. Whatever may be the expected figure, it appears that a minimum of 6.25 weight percent is required from the consideration of economic viability.

Table.1. H₂ Storage – the grand challenge (US DOE targets (somewhat reasonable) for on board hydrogen storage materials)

Storage Parameter	Units	2015	Ultimate
System Gravimetric	g H ₂ /kg	55(5.5	75(7.5
Capacity		wt.%)	wt%)
System Volumetric	gH,/L	40	70
Capacity	_		

(Solid H, density at zero K and zero pressure is 86 g/L).

Even though many solid state options for hydrogen storage like metal and intermetallic hydrides, Metal organic frameworks, isoreticular metal-organic frameworks (IRMOF) covalent-organic frameworks (COF) clathrates and carbon materials have been considered, carbon materials with the possibility of morphology variation have been one of the contending candidates mainly because nature has stored hydrogen mostly in hydrocarbons and also in water. Essentially, the storage of hydrogen has been treated within the framework of molecular physical adsorption (weak binding energy of the order of meV and essentially low temperature process), dissociative chemisorption (with strong binding energy of the order of 2-4 eV and high temperature process) or quasi-molecular form wherein the molecule is not completely broken but the bond is weakened with binding energy in the range of \sim 1 eV. Each of these forms will have the capacity to store but all of them cannot satisfy the necessary reversibility for use as fuel without expanding additional energy. In atomic solid state materials, approximately each atom gives rise to a void space and hence even if we assume each of these voids can accommodate one hydrogen atom, it is clear that the storage capacity will be inversely proportional to the atomic weight of the metallic element involved in the storage. In the case of transition metal containing intermetallics like FeTi, LaNi, etc., the storage capacity can be in the range of 2-3 weight percent, while in the case of light elements like Mg, it can exceed the threshold value of 6.25 weight percent. Though the idea of quasi molecular form of hydrogen sorption appears to be the possible mode of hydrogen storage, the concept of bonding as proposed by Kubas [1] involving bonding and back bonding model has to be examined since the orbitals wherein the back bonding were to occur may not be energetically favourable. The other concept [2] of molecular electric field of the metal polarizing molecular hydrogen though may be feasible, complete reversibility cannot be ensured in these cases. Therefore it appears that hydrogen storage may have to be dissociative for use as a fuel in mobile and stationary applications with appropriate bond strength.

The storage capacity of complex metal hydrides has also received considerable attention from various view

Figure 1. Hydrogen storage capacity in Weight % in carbon materials as a function of the year of the report of the study [reproduced from C. Liu, Y. Chen, C.Z. Wu, S.T. Xu and H.M. Chen, Carbon, 48,452-455 (2010)]

point. The essential point of these systems is that their storage capacity is in the desirable range and also there are considerable reprocessing possibilities available. The introduction of systems like Li₃N or NH₃BH₃ has also possibly thrown new hope that chemical hydrides may be one of the appropriate candidates for solid state hydrogen storage applications.

Probably hydrogen storage in carbon materials under ambient conditions has seen more controversy than any other scientific endeavor due to various reasons in this time period. It is not our intention to examine this controversy. However, the fact remains that any value between 0 and 67 weight percent has been claimed to be the storage capacity in carbon materials (refer to the data given in Table 2, wherein the different measurements of hydrogen sorption on different carbon forms are assembled). The diversity of data of hydrogen storage in carbon materials is reflected

Nature of adsorbent	Temp range (K)	Pressure (MPa)	Wt % H ₂ stored	Ref
SWNT	133	0.04	5-10	3
SWNT	298	0.67	3.5-4.5	4
SWNT	77-300	8	1-15	5
SWNT	80	7	8.25	6
SWNT	298	4.8	1.2	7
MWNT	298	12.16	56	8
MWNT	300-700		0.25	9
MWNT	298	10	0.68	10
MWNT	300	1	13.8	11
MWNT	300	7.0	0.7-0.8	12
SWNT	80	10	11	13
SWNT	80	10	2	14
SWNT	80	16	6.5	15
SWNT	300	0.04	10	16
SWNT	300	12	4	17
MWNT(Li doped)	200-400	0.1	20	11
MWNT (Li doped)	200-400	0.1	2.5	18
MWNT (K doped)	300	0.1	1.8	19
GNF	300	12	65	20
GNF	300	12	6.5	21
GNF	300	12	10	22

Table 2: Selected data reported in literature on hydrogen storage in carbon nano materials.

Table.3.Weight percent Hydrogen stored in various possible materials as complex hydrides [21]

Stored as (storage) Material	Weight percent stored
LiAlH ₄	10.54
MgH ₂	7.69
LiNH ₂	8.78
$Mg(NH_2)_2$	7.15
NaBH ₃	10.57
Al(BH ₃) ₃	16.78
NH ₃ BH ₃	19.35
$NaAlH_4$	7.41
$Mg(AlH_4)_2$	9.27
$LiBH_4$	18.36
$Mg(BH_4)_2$	14.82
CH_4	25.0
$\rm NH_4BH_4$	24.24

in Fig.1. This unusual situation in scientific research has led to a spate of investigations on the hydrogen storage in carbon materials. In this presentation, focus has been given to analyze the reasons for this anomalous situation in scientific research and also to evaluate the storage capacity of hydrogen in carbon materials.

It has been stated that a minimum of 6.25 weight percent of hydrogen is necessary for commercial exploitation of this technology. It is therefore necessary that one considers all possible systems where hydrogen content can be higher than this threshold value. One such listing is given in Table 3. However, though it may be possible to store hydrogen above the threshold value of 6.25 weight percent, it must be kept in mind that the release of hydrogen requires expansion of energy and hence the net energy available is considerably reduced below the threshold value.

Hetero atom Substituted Carbon Materials

Generally, good carbon materials are considered to be equi-potential surfaces and hence the dissociation of hydrogen molecule does not occur on this surface under ambient conditions. This deduction is also supported by the DFT calculations wherein it has been shown that the dissociation energy of molecular hydrogen is not altered on pure carbon surfaces, while heteroatom substituted carbon surfaces showed considerable decrease in hydrogen dissociation energy. For the details of the Density Functional Theory (DFT) calculations see references [23-26]. The data relevant to this statement are given in Table 4 for carbon surfaces substituted with hetero atoms like B, N, P and S. It has been shown in these studies that heteroatoms promote the dissociation of molecular hydrogen and the dissociated hydrogen is stored by spillover mechanism. A typical reaction profile shown in Fig.2 possibly demonstrates that the activation barrier reduction for the dissociation of hydrogen molecule is provided in the heteroatom substituted sites. The calculated activation barrier values for the multiple step activation of hydrogen on the substituted carbon surfaces as deduced from DFT calculations are given in Table 5. These calculated values possibly imply that the hydrogen storage possibly takes place by the dissociation of molecular hydrogen though not bound to a single specific site.

It is known that the hydrogen storage may involve the trapping of the dissociated hydrogen atoms (or other species) inside the geometrical volume constituting the solid. It is generally conceived that for solid state matrices, there will be approximately one void space (this can be octahedral, or tetrahedral or any other void space) for every atom constituting the solid matrix. If all these available void spaces in carbon lattice were to be occupied by dissociated or quasi-molecular hydrogen, then the maximum storage capacity can be in the range of 8 wt % which is of the same order of magnitude stipulated by DOE. If this were to be the mode of hydrogen storage in the interstitial positions, then the hydrogen atoms will be in the field of the neighbouring atoms (depending on the geometry of the interstitial site the hydrogen atom will be under the influence of n atoms). Therefore, this type of storage involving multiple sites bonding with no specific directional bonding may be able to store hydrogen for sufficient length of time and can release hydrogen with slight energy input which is essential for efficient storage purpose. This shows that the necessary hydrogen storage can be achieved only if the atomic weight of the element chosen for storage is 16 or near about it.

Hydrogen storage on boron substituted carbon materials

To examine the postulate that heteroatoms may act as activation centres for hydrogen storage in carbon materials, boron substituted carbon material was examined in this study. It may be recalled from the results of DFT calculations shown above that boron substitution in adjacent and alternate positions may be the two possible centres and substitution at alternate positions is preferable for hydrogen storage. The boron substituted carbon material has been synthesized using Resorcinol and Triethylborate as carbon and boron sources. Boron

System	Total energy (Hartrees)	Bond length H ₁ H ₂ (Å)	Dissociation energy (eV)
Hydrogen	-1.175	0.708	4.76
CNT CNT + H ₂	-3686.5502 -3687.7161	0.776	- 4.51
NCNT NCNT + H ₂	-3703.5908 -3703.5989	- 0.835	- 0.22
PCNT PCNT + H ₂	-3989.1694 -3990.5989	- 0.815	2.33
SCNT SCNT + H ₂	-4046.0020 -4047.0067	0.817	- 0.13
BCNT BCNT + H ₂	-3671.7254 -3672.9440	0.818	- 5.95
2B CNT(adjacent0 2B CNT (adjacent)+ H ₂	-3658.6666 -3659.8092	0.913	- 3.88
2B CNT (alternate) 2B CNT(alternate) + H_2	-3659.3491 3660.3594	0.928	- 0.28

Table.4. Bond length and dissociation energy of hydrogen on the carbon nanotube (CNT) calculatedusing B3LYP with 6-31g(p, d) basis set on the UFF optimized structure

Table 5. Transition state optimized parameters of the cluster and the value of the activation energy cal-
culated by B3LXP with 6-31g (p,d) basis set

System	E _a I	E _a II	H ₁ -H ₂	Х-Н	C-H ₁ ^b	C – H ₂ ^b
	(eV)	(eV)	(Å)	(Å)	(Å)	(Å)
CNT cluster	10.02	-	0.71	-	-	-
NCNT Cluster	3.84	4.58	1.45	1.11	1.70	1.94
P CNT cluster	3.81	3.99	1.51	1.61	1.27	2.33
S CNT Cluster	3.65	4.85	1.50	1.75	1.24	2.40
2B CNT Cluster (adjacent)	2.22	2.98	1.95	1.31	2.59	2.72
2B CNT cluster (alternate)	1.5	2.33	2.95	1.47	1.47	2.34

 $E_a = E$ (transition state) – E (reactant) ^b shortest C-H bond distance

substituted carbon materials were synthesized by the following procedure: 11.2 g of resorcinol was taken in a beaker, 30 ml of formaldehyde solution was added stirred at room temperature for 1 hour, 15 ml of Triethylborate (TEB) solution was added stirred well then kept in an oven at 373 K for 24 hours. The final homogeneous mixture was transferred into a quartz tube then kept in a tubular furnace and calcined at two different (600 and 800 °C) temperatures for 6 hours under inert atmosphere. The heating rate employed for calcination is 10 °C/min.

For the carbon sample calcined at 600 °C, two broad x-ray diffraction reflections centered at 2 θ values of 25° and 45° corresponding to reflections from (002) and (100)

planes and for the sample calcined at 800°C two reflections at 20 values of 22° and 43° indicating that the synthesized materials possess carbon lattice, the broad reflections indicate the crystalline nature of the synthesized material. As the calcination temperature is increased, the intensity of the diffraction peaks increased. Since the amount of boron introduced is small, changes in 20 value from that of pure carbon lattice is not significant though the diffraction peaks shift slightly to higher angle side. The average crystallite size of this carbon material was found to be ~0.8 nm. FT-IR Spectrum of the boron containing carbon material shows a broad absorption band in the region of 3200 – 3600 cm⁻¹ with the maximum around 3450 cm⁻¹. This band can be

Figure 2a. The transition state energy profile of the heteroatom substituted CNTs cluster calculated by DFT method (B3LYP) with 6-31g (p,d) basis set the spheres indicated by arrows are heteroatoms like N, P, and S.

assigned to the O-H stretching mode vibration of adsorbed water. The position of this band and also the apparent asymmetry on the lower wave number side indicates the presence of hydrogen bonds. The absorption band at 2928 and 2857 cm⁻¹ can be due to the aliphatic character of the C-H bonds. It is clear that the C-OH and stretching mode of vibration can be found at 3742 cm⁻¹ and their bending mode of vibrations are in the range 1500 to 1650 cm⁻¹ with the maximum at 1536 and 1631 cm⁻¹. The absorption band at 1424 cm⁻¹is due to stretching vibration of C=C bond. The absorption in the range 1010 cm⁻¹ to 1200 cm⁻¹ with the maximum around 1092 cm⁻¹ can be assigned to the vibration of the B-C bond. These results also show that boron was incorporated in the carbon material [27-29]. The Raman spectrum of each of the two samples showed two broad peaks at 1304 cm⁻¹ and 1572 cm⁻¹ (600 °C calcined) and at 1320 cm⁻¹ D and 1575 cm⁻¹ G bands (for 800 °C calcined sample). These two bands showed the presence of defects and graphitic nature of the synthesized carbon material. The relative intensities (I_D/I_C) of these peaks depend on the carbonization degree of the carbon materials. The ratio of integrated intensity (I_D/I_C) of the D and G bands is = 1.04 (carbon prepared at 600°C) and = 1.36 (carbon prepared at 800°C). As the carbonization temperature is increased, the intensity of the D band and G band of the carbon material is increased and the two peaks slightly shifted to higher wave number side. Generally normal carbon materials show equal intensity for (D) and (G) bands. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position also increased with the boron substitution. The intensities of (D) and (G) bands are changed thus showing that boron substitution has taken place in the synthesized carbon material [30-32].

The high resolution scanning electron micrographs (SEM) of the boron containing carbon material are shown in Fig. 3. These images show the morphological aspects of the

Figure 2b. The transition state energy profile of boron substituted CNT cluster calculated by DFT method (B3LYP) with 6-31g (p,d) basis set (the spheres indicated by arrows are boron atoms).

synthesized boron substituted carbon material, images (a), (b), (c) and (d) are obtained at different magnifications and images were recorded from the same area of the material. The images showed sphere like uniformed morphology.

The carbon 1s emission in X-ray photoelectron spectrum at 284.4 and 285.3 eV showed the presence of graphitic, and C-B type carbon environments. The presence of boron in this sample was ascertained from B 1s peak at 192.8 eV. The B ls peak does not approach the value expected for a surface layer of boron oxide. In fact, it seems to approach lower binding energy value where B-C, or mixtures of B-C and B-O bonding are expected. Obviously, continued study of this effect is justified. However, there is no splitting or different peak for the boron in carbon materials has been seen to show the different chemical environment. However a clear peak broadening for boron has been observed at the lower binding energy region, which has been deconvoluted. The peak at (193.8 ± 0.1) eV) can be assigned to the boron atom substituted in the graphitic structure as proposed by Jacques et. al. [33], and L. G. Jacobsohn et. al. [34]. The B1s peak value around 190.4-195.3 eV has been assigned to boron atoms with the local environment of BC,O. From the deconvoluted B1s spectrum it is clear that the boron atom exists in two different chemical environments which are attributable to the presence of B₄C and BC₂O type chemical atmosphere [35-40]. The surface area determined by BET method was $215 \text{ m}^2/\text{g}$. The hysteresis loop obtained in the adsorption desorption isotherms indicated the presence of both microand meso-pores in the sample.

The hydrogen adsorption capacity was determined at two different temperatures namely at 293 K and at 77 K. Before hydrogen absorption the synthesized carbon materials were degassed at 473 K for 6h. The carbon material calcined at 600 °C showed nearly 3.5 wt%

Figure 3: HRSEM images of the boron substituted carbon material for different magnification with same area of the material a) 60000x and b) 120000x.

hydrogen storage at room temperature and 0.5wt% at 77K. However, the carbon material calcined at 800 °C, showed 1wt% hydrogen storage at 18 bar pressure at room temperature and 0.15 wt% at 77K. Thus demonstrating that hetero atom substitution considerably alters the hydrogen sorption capacity of carbon materials. Work on other substituted carbon materials are in progress.

Acknowledgement: The authors wish to record their grateful thanks to the Department of Science and Technology (DST) for the creation of the National Centre for Catalysis Research (NCCR), and also to Ministry of New and Renewable Energy (MNRE) for funding on this research work. The authors thank Dr. M. Sankaran for the help in the DFT calculations.

References

- 1. G. Kubas, J. Organomet. Chem., 37 (2001) 635.
- 2. J. Niu, and B.K. Jena, Phy. Rev. Lett., 68 (1992) 2277.
- A.C.Dillon, K.M.Jones, T.A.Bekkedahi, C.H.Kiang, D.S.Bethune, and M.J.Hebena, *Nature.*, 386 (1997) 377.
- 4. A. C. Dillon et al., *FY 1999 Progress Report*, DOE Hydrogen Program, U.S. DOE, Washington DC 1999.
- 5. X. Chen et al., *in Proc. of the 3rd Materials Research Society Symp*, Materials Research Society Press, Boston, MA 2002.
- Y. Ye, C. C. Ahn, C. Witham, and B. Fultza, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, *Appl. Phys. Lett.*, 74 (1999)2307.
- M.R. Smith, Jr., E.W. Bittner, W. Shi, J.K. Johnson, and B.C.Bockrath, J. Phys. Chem. B., 107 (2003) 3752.
- A. Chambers, C. Park, R. T. K. Baker, N. M. Rodriguez, J. Phys. Chem. B., 102 (1998) 4253.
- 9. X. B. Wu, P. Chen, J. Lin, K. L. Tan, *Int. J. Hydrogen Energy.*, 25 (2000)261.

- 10. H.Zhu, A.Cao, X. Li, C. Xu, Z. Mao, D.Ruan, J. Liang, and D.Wu, *Appl. Surf. Sci.*,178(2001)55.
- 11. Y. Chen, D.T. Shaw, X. D. Bai, E. G. Wang, C. Lund and M.W. Lu et al, *Appl. Phys. Lett.*, 78(2001) 2128.
- 12. A. Badzian, T. Badzian, E. Breval, A. Piotrowski, *Thin Solid Films.*,170 (2001) 399.
- 13. F.L. Darkrim, D. Levesque, J PhysChem B., 104 (2000) 6773.
- 14. Q. Wang, and J.K. Johnson, J PhysChem B., 103(2000)4809.
- 15. Y.F. Yin, T. Mays, and B. McEnamey, *Langmuir*, 103 (2000) 10521.
- 16. A.C. Dillon, T.A. Bekkedahl, K.M. Jones, and M.J. Heben, *Fullerenes*, 3 (1999) 716.
- 17. C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S.Dresselhaus, *Science* 286 (1999) 1127.
- 18. R.T. Yang, Carbon., 38 (2000) 623.
- Pinkerton F, Wickle B, Olk C, Tibbetts G, Meisner G, Meyer MS, Herbst J. Proceedings of the 10th Canadian Hydrogen Conference, Quebec, Canadian Hydrogen Association, (2000).
- 20. Rodriguez N. *MRS Fall Meeting*, 2–6 December, Boston, Paper D 11.6 (1996).
- Browning DJ, Gerrard ML, Laakeman JB, Mellor IM, Mortimer RJ, Turpin MC. In: Mao ZQ, Veziroglu TN, editors. Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China, Published by International Hydrogen Association. (2000) 580.
- 22. Gupta BK, Awasthi K, Srivastava ON. In: Mao ZQ, Veziroglu TN, editors. *Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China*, Published by International Hydrogen Association., (2000) 487.
- 23. M.Sankaran and B.Viswanathan, Carbon., 44 (2006) 2816.
- 24. M.Sankaran, B.Viswanathan and S.Srinivasa Murthy, *Int.J.Hydrogen Energy.*, 33 (2008) 393.
- 25. B.Viswanathan and M.Sankaran, *Diamond and Related Materials.*, 18 (2009) 429.
- 26. B.Viswanathan, M.Sankaran, A.Ariharan and K.S.Lakhi, *Adv. Por. Mater.*, 1 (2013) 122.
- J. Romanos, M. Beckner, D. Stalla, A. Tekeei, G. Suppes, S. Jalisatgi, M. Lee, F. Hawthorne, J D. Robertson, L. Firlej, B. Kuchta, C. Wexler, P. Yu, P. Pfeifer, *Carbon.*, 54 (2013) 208.
- 28. K. Shirai, S. Emura, S. Gonda Y. Kumashiro, J Appl Phys., 78(1995)3392.
- 29. A. A. Arie, B. J. Jeon, J. K. Lee, carbon letters., 11 (2010) 130.
- 30. K. Ghosh, M. Kumar, T. Maruyama and Y. Ando, *Carbon.*, 47 (2009)1565.
- 31. K. McGuire, N. Gothard, P. L. Gai, M. S. Dresselhaus, G. Sumanasekera, A. M. Rao, *Carbon.*, 43(2005)219.
- 32. T. Shirasaki, A. Derre, M. Menetrier, A. Tressaud, S. Flandrois, *Carbon.*, 38 (2000) 1467.
- 33. S. Jacques, A. Guette, X. Bodrrat, F. Langlais, C. Guimon and C. Labrugere, *Carbon.*, 34 (1996) 1143.
- 34. L.G. Jacobsohn, R.K. Schulze, M.E.H. Maia da Costa, M. Nastasi, *Surface Science.*, 572 (2004) 424.
- 35. W. Cermignani, T. E. Paulson, C. onneby, C. G. Pantano, *Carbon.*, 33 (1995) 374

- J. S. Burgess, C. K. Acharya, J. Lizarazo, N. Yancey, B. Flowers, G. Kwon, T. Klein, M. Weaver, A. M. Lane, H. Turner, S. Street, *Carbon.*, 46 (2008)1717.
- T. Liu, R. Luo , S. H. Yoon, I. Mochida, J. Power Sources., 195 (2010) 1719.
- 38. K. Eunkyung, O. Ilwhan, K. Juhyoun, *Electrochemistry Communications.*, 3(2001)612.
- B. Ottaviani, A. Derré, E. Grivei, O. A. M. Mahmoud, M. Guimon, S. Flandrois, P. Delhaès, J. Mater. Chem., 8 (1998) 203.
- D. P. Hashim, N. T. Narayanan, J. M. Romo-Herrera, A. D. Cullen, M. G. Hahm, P. Lezzi, J. R. Suttle, D. Kelkhoff, E. Munoz-Sandoval, S Ganguli, A. K. Roy, D. J. Smith, R. Vajtai, B. G. Sumpter, V. Meunier, H. Terrones, M. Terrones, P. M. Ajayan, *Nature. Sci. Rep.*, 2(2012)363.

B. Viswanathan had been a faculty in the Department of Chemistry at the Indian Institute of Technology, Madras till 2004. He is presently Head, National Centre for Catalysis Research at IITM. He has been an active researcher in the areas of Materials Science, Heterogeneous Catalysis, and Energy Conversion processes. He has more than 30 books to his credit and an equal number of patents. He has published extensively in the above areas in almost all international and national journals. He has contributed significantly to human resource development in this country.

A. Ariharan is a research scholar in the National Centre for Catalysis Research. He has been working in the area of hydrogen storage by Carbon Materials especially Heteroatom substituted Carbon nanomaterials.

Application of Metal Hydride Systems for Hydrogen Storage

Seemita Banerjee*, Priyanka Ruz, Asheesh Kumar, C. G. S. Pillai

Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India *Email: seemita@barc.gov.in

Abstract

The metal hydride systems have been investigated in detail for their hydrogen storage properties. Thermodynamic and kinetic studies carried out on the hydrogenation of alloys like FeTi, Ti₂CrV, LaNi₅, Ti₂Nb, etc., have established different ways of optimizing their hydrogen storage properties. Suitable modification in the alloy composition by addition of metals like Fe, Co, Ni, Zr etc., significantly affects the hydrogen absorption/desorption properties.

1. Importance of Hydrogen Storage

In recent years, research in materials science has shown a rapid expansion towards discoveries of suitable materials for sustainable energy. A hydrogen economy is proposed to circumvent the ill effects of using hydrocarbon fuels in transportation and other end-use applications, where carbon is released to the atmosphere. In this context, the storage of hydrogen poses the biggest challenge in a new hydrogen economy because the storage medium must meet the requirements of high gravimetric and volumetric densities, fast kinetics and favorable thermodynamics [1-4]. Although molecular hydrogen has very high energy density on a mass basis, as a gas, at ambient conditions, it has very low energy density by volume. If it is to be used as fuel stored on board in the vehicles, pure hydrogen gas must be pressurized or liquefied, which in addition to being energy intensive also bring complications in terms of safety aspects. Considering all these issues, solid-state materials offer a practical alternative, and lot of efforts have been devoted in finding efficient solid state hydrogen storage materials.

There are different candidate materials for solid state hydrogen storage [5-11]. The most conventional and practical one is metal hydride, where different transition metal based and light weight alloys are being considered. The suitability of alloys for hydrogen storage applications can be judged from their hydrogen storage properties such as reversible hydrogen storage capacity, plateau pressure, plateau slope, hysteresis, sorption kinetics and thermodynamics of dissolved hydrogen [12]. Transition metal based alloys are quite promising for their good hydrogen absorption / desorption kinetics and favorable thermodynamics whereas light metal alloys show higher hydrogen absorption capacities but unfavorable kinetics and thermodynamics.

Other exclusively studied hydrogen storage materials include metal organic framework, carbon nanostructures

etc. Metal organic frameworks (MOF) can absorb hydrogen by physisorption, but it requires operating at cryogenic condition. Carbon nano structures are one of the most promising solid-state materials for hydrogen storage because of their porosity, high surface area and high gravimetric hydrogen storage properties. Nanotubes, nano scrolls, nano-fibers, fullerenes and graphene sheets are among the different well studied structures. Though the experimental results obtained for hydrogen storage on carbon nanotubes are contradictory because of the presence of metal nano particle impurities and defect structures, but still theoretical and experimental research is going on to see its nature of interaction with hydrogen, curvature effect and the effect of doping on the hydrogen absorption properties.

2. Basics of Hydrogen Interaction in Metal Hydride

Here we discuss the hydrogen uptake process of metal. Fig. 1 schematically shows the hydrogen absorption process on the metal surface. The hydrogen absorption process is exothermic and certain amount of heat is released during the hydrogen absorption depending upon the host material.

Figure 1. Mechanism of metal hydride formation

Initially the hydrogen molecule approaches to the metal surface [Fig. 1(a)] and interacts with the surface by van der Waals force. Here the hydrogen remains in the physisorbed state [Fig. 1(b)], with typical binding energy of ~10 KJ/mole. In the next step, the hydrogen molecule needs to overcome the activation barrier for dissociation of the H-H bond and after that the hydrogen molecule dissociates into hydrogen atoms [Fig. 1(c)]. The hydrogen atoms get chemisorbed on the surface with the binding energy in the order of 50 KJ/mol-H₂. After the dissociative chemisorption of the hydrogen atoms, they penetrate into the interior of the metal crystal to form M-H solid solution, which is known as α -phase [Fig. 1(d)]. In most of the cases, the hydrogen atoms occupy interstitial positions (tetrahedral or octahedral) and the cell parameter of the crystal lattice increases. The physical arrangement of the metal atoms may also change during hydride formation. The hydrogen absorption in a-phase is governed by Sievert's law, which states that

$$C_{\rm H} = k p^{1/2}$$
 (1)

Where C is the concentration of hydrogen in the α -phase, p is the hydrogen pressure and k is temperature dependent constant. After increase in the concentration of hydrogen in α -phase, the metal-hydrogen phase starts precipitating and the phase is called β -phase.

3. Thermodynamics of hydride formation

The thermodynamics of gaseous hydrogen absorption is represented by pressure composition isotherm. The equilibrium or plateau pressure (P_{eq}) strongly depends on temperature and is related to the changes of enthalpy (Δ H) and entropy (Δ S), respectively. The enthalpy term characterizes the stability of the metal-hydrogen bond. A plot between equilibrium hydrogen pressure and hydrogen-to-metal ratio at a constant temperature is called pressure-composition isotherm (PCT) [13]. In the PCT curve [Fig. 2], initially the hydrogen pressure increases sharply that means hydrogen diffuse into the interstices of metal or alloy forming solid solution (α -phase).

Figure 2. A typical pressure composition isotherm showing the H_2 absorption-desorption profile

As the hydrogen concentration further increases in the lattice, the hydride phase precipitates. The hydride phase is known as the β -phase. The hydride formation is indicated by the plateau of the plot. In the plateau region, the solid solution and the hydride phase coexist ($\alpha \& \beta$ -phases). The length of the plateau determines how much amount of hydrogen can be stored and recovered by means of a small change in pressure. The last portion represents the hydride phase only, the hydrogen pressure increases steeply with concentration in this region.

Many metal hydrides do not undergo absorption and desorption along the same path, i.e. the absorption curve and desorption curves of metal hydrides are not the same. The path difference between the absorption and desorption isotherms is known as hysteresis. In most of the cases, the desorption plateau is considered as the true plateau, as the equilibrium is reached faster during desorption. The hydride having higher desorption pressure is less stable than the lower desorption pressure hydride.

The reaction of a metal with hydrogen to form metal hydride can be represented by the following equation:

$$M + (x/2)H_2 \leftrightarrow MH_{x'}$$
(2)

When an intermetallic compound reacts with hydrogen the reaction can be written as follows:

$$AB + (x/2)H_2 \leftrightarrow ABH_x$$
 (3)

Where, A & B are two elements forming the alloy.

We know from Gibbs free energy relation,

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$, and $\Delta G^{\circ} = -(x/2)RTlnP_{H2'}$ (4)

where ΔG° , ΔH° , and ΔS° are standard free energy, enthalpy and entropy respectively.

The relation between hydrogen pressure and enthalpy of hydride formation can be written as follows.

$$\ln P_{H_2} = (2/x)\Delta H^{\circ}/RT - (2/x)\Delta S^{\circ}/R$$
 (5)

This relation is known as van't Hoff relation. ΔH and ΔS are enthalpy and entropy per mole of H_2 gas respectively. Using van't Hoff relation, the enthalpy and the entropy of the hydride can be found out by studying the pressure composition isotherm at different temperatures. The plateau pressure or equilibrium pressure of the PCT diagram depends on the working temperature. With increase in the temperature, the plateau pressure increases and the plateau region decreases. At a critical temperature (T_c) no plateau exists. The plot of logarithm of hydrogen pressure verses reciprocal of temperature, i.e. the graph between $\ln P_{H2}$ and 1/T is known as van't Hoff plot as

shown in Fig. 3. In the van't Hoff equation, the slope of the line is equal to the enthalpy of formation divided by the gas constant and the intercept is equal to the entropy of formation divided by the gas constant. The value of Δ H can be widely different for different metal atoms and alloys as it varies from large negative to large positive value. Some of the typical hydride formation enthalpy values of

Figure 3. Schematic PCT diagram at different temperatures (T1<T2<T3<T4<Tc), and the van't Hoff plot

different metals have been listed in Table 1.

The enthalpy and entropy of the hydrides determine the working temperatures and the respective plateau pressures of the storage materials. For most applications, especially for mobile applications, working temperatures below 100 °C or at least below 150 °C are favored. A stable hydride is the one for which the equilibrium pressure lies below 1 atmosphere at 300 K. These hydrides have enthalpy of formation more negative than -40kJ/mole of H₂[15].

Table 1: Enthalpy of formation of transition metal hydrides in kJ/mol H, [14]

ScH ₂ TiH ₂ VH ₂ CrH MnH FeH CoH _{0.5} NiH _{0.5}
-200 -126 -54 -16 -9 +14 0 -6
YH ₂ ZrH ₂ NbH ₂ MoH TcH RuH RhH _{0.5} PdH _{0.5}
-225 -165 -60 -12 +36 +42 +25 -40
LaH ₂ HfH ₂ TaH _{0.5} WH ReH OsH IrH PtH
-210 -133 -78 +16 +52 +48 +42 +26
ThH ₂ UH ₃ PuH ₂

```
-146 -85 -155
```

In literature many reports are there, where the enthalpy of formation of the hydride has been found out using both direct and indirect techniques. Some researchers find out the enthalpy value using the combination of a Sievert's type of P-C-T apparatus and a reaction calorimeter [16-18]. This enables direct measurements of Gibbs' free energies and enthalpy simultaneously and it shows the greater accuracy of the enthalpy and entropy values over the entire range. The use of a heat flow calorimeter with a differential twin cell configuration is another means to study solid-gas reactions [19].

The first report of the intermetallic hydride came in 1958 and several other intermetallic compounds were reported subsequently. Till then many interesting alloys and intermetallic compounds have been identified as hydrogen storage materials, most of which consist of one hydride forming element and one non hydride forming element. Most typical examples are LaNi₅, FeTi, AB₂ type of Laves phase systems, TiV based solid solutions, and Mg based systems. Due to this thermodynamics criterion, it is very important to know the Δ H value of the metal hydride system as it decides whether the metal hydride system is reversible at room temperature or not.

4. Different metal hydride based systems

LaNi₅ based systems are the most well studied hydrogen storage materials. LaNi₅ forms hydride with the formula unit of $LaNi_5H_7$ (1.5 wt. %) and can be easily activated. It shows very flat plateau region with low hysteresis. Murray et al [19, 20], used a heat flow calorimeter with the differential twin cell configuration to study metalhydrogen reactions of LaNi₅ system. Enthalpies for the reaction in the two-phase region of the LaNi₅-H₂ system are independent of the overall composition but exhibit a small hysteresis and the absorption and desorption enthalpies are found to be -32.30 kJ/mole and -31.83 kJ/mole respectively. The problem with this alloy is that after a few cycles of hydrogen absorption- desorption, the hydrogen storage capacity decreases due to the degradation of the alloy. The thermodynamic properties of the LaNi₅ compounds vary extensively with composition. Several multi-components alloys in this series, $La_{1,v}RE_vNi_{5,v}M_v$ (RE = mishmetal, Ce, Nd& M = Fe, Co, Ni, Mn, Cu Al, Sn etc.), have been studied comprehensively [21, 22]

The hydrogen storage capacity of the FeTi based intermetallic compound is 1.9 wt. % (it forms FeTiH_2), and the major advantage of this system is that the constituent elements are inexpensive. But due to the formation of TiO_2 oxide layer the activation of FeTi system is troublesome process. Different substituent elements have been studied to improve its activation and kinetics, and the most effective one is found to be Pd [23, 24].

The investigation of titanium-vanadium alloys generally show formation of two types of hydrides: a mono-hydride with a pseudo-cubic fcc (face centered cubic) structure and a di-hydride with a CaF_2 structure. Usually, the mono-hydride is thermodynamically too stable for practical applications; this makes the usable capacity smaller than the total capacity. If the mono-hydride could

be destabilized without changing its hydrogen storage capacity, then the BCC (Body Centered Cubic) solid solution could be very attractive alloy for commercial applications. Nomura and Akiba [25], in their work on Ti-V-Fe alloy system, have mentioned that ferrovanadium may be used as raw materials instead of pure vanadium. Since then, use of ferrovanadium or mixture of vanadium and iron has been reported by numerous authors [26-32]. Recently, particular emphasis has been on Ti-V-Cr compositions [33]. Another system that was subject of many studies is Ti-V-Mn [34-36]. Ti was also partially replaced by Fe and the hydrogen absorption properties of $Ti_{1,x}VFe_x(x = 0.0, x)$ 0.1, 0.15, 0.2 and 0.4) alloys were investigated in detail. Fe substituted Ti-V alloys were characterized by XRD and EPMA. It is evident from Fig. 4, that except Ti_{0.85}VFe_{0.15}, all the other Ti-V-Fe compositions are having mixed phase structure composed of a body centered cubic (bcc) phase and a secondary C14 Laves phase, with former as the major phase. The composition, $Ti_{0.85}VFe_{0.15}$ is characterized by a single phase bcc structure. The hydrogen storage capacities of Ti_{1x}VFe_x alloys as a function of Fe content, x, are shown in Fig. 5. It is seen that the hydrogen storage capacity of Ti_1 VFe increases with Fe content up to x = 0.15, but further increase in the Fe content brings down the hydrogen storage capacity drastically. At a high Fe concentration, the bcc phase was found to coexist with the secondary phase. The amount of the hydrogen absorbed in this series of alloys is closely related with the amount of bcc phase present. The bcc phase in Ti-V system is reported to absorb more hydrogen than the secondary phase [17]. The composition Ti₀₈₅VFe₀₁₅ was found to have single phase bcc structure and it shows the maximum storage capacity of 3.7 wt. % among the various Ti-V-Fe compositions studied in this work.

Figure 4: (A) X-ray diffraction patterns for: (a) $Ti_{0.9}VFe_{0.1'}$ (b) $Ti_{0.9}VFe_{0.1}H_{3.65'}$ (c) $Ti_{0.85}VFe_{0.15'}$ and (d) $Ti_{0.85}VFe_{0.15}H_{3.83}$ (the lines corresponding to the secondary phase are marked by '*') (B) Electron micrographs for: (a) $Ti_{0.9}VFe_{0.1}$ and (b) $Ti_{0.85}VFe_{0.15}$ alloys [International Journal of Hydrogen Energy, 32, 4973 (2007)]

Figure 5. Variation of hydrogen absorption capacity with respect to the Fe content in $Ti_{1-x}VFe_x$ alloys (x = 0.0, 0.1, 0.15, 0.2 and 0.4) [International Journal of Hydrogen Energy, 32, 4973 (2007)]

The desorption profiles of the saturated hydrides reveal that with increasing Fe concentration the hydrogen desorption temperature decreases. This may be attributed to the fact that with increasing Fe concentration the relative stability of the hydrides decreases and hence the hydrogen desorption takes place at a lower temperature.

The hydrogen absorption properties of Ti_{0.85}VFe_{0.15} alloy was modified by Zr substitution (5 at. %) at V site to ease the activation as it is known that small amount of Zr substitution eases activation before hydrogen absorption. The alloys and the corresponding hydrides were characterized by X-ray diffraction and Mössbauer spectroscopy. The crystal structure (Fig. 6) shows that 5 at. % of Zr substitution in place of vanadium results in a biphasic structure consisting mainly C15 cubic Laves phase along with V based bcc solid solution. The lattice parameter of the C15 cubic Laves phase was found to be 7.36 Å. It may be noted that the C15 cubic Laves phase structure remains unchanged on hydrogenation of Ti_{0.85}V_{0.95}Fe_{0.15}Zr_{0.05}

Figure 6. XRD patterns of $Ti_{0.85}V_{0.95}Fe_{0.15}Zr_{0.05'}$, $Ti_{0.85}V_{0.95}Fe_{0.15}Zr_{0.05}H_2$ and $Ti_{0.85}V_{0.95}Fe_{0.15}Zr_{0.05}H_{3.74}$. (Δ C15 Laves phases, * V based bcc solid solution) Int. J. of Hydrogen Energy, 33 (2008) 350-55.

SMC Bulletin Vol. 5 (No. 2) August 2014

alloy though there is an appreciable shift in the XRD peak positions to lower 2-theta values indicating volume expansion due to hydrogenation.

Comparing the hydrogen absorption capacity and the hydrogen desorption properties of $Ti_{0.85}V_{0.95}Fe_{0.15}Zr_{0.05}$ with those of $Ti_{0.85}VFe_{0.15'}$ it was found that the Zr substitution improves the hydrogen absorption-desorption characteristics of $Ti_{0.85}VFe_{0.15}$ alloy by decreasing the hysteresis loss without appreciably affecting the maximum hydrogen storage capacity The effective hydrogen storage capacity was found to improve to 5 at. % of Zr substitution in place of V. The increase in the effective hydrogen storage capacity can be attributed to the fact that Zr substituted alloy has an additional site, which desorbs hydrogen at a lower temperature as compared to Ti-V-Fe system.

Recently, in Ti-Cr-V series [37], we have explored the hydrogen storage properties of Ti₂CrV alloy. The alloy shows quite high hydrogen storage capacity of 4.37 wt. % at room temperature. The alloy was tested for cyclic stability and Fig. 7 shows the cyclic hydrogen storage capacities of the Ti₂CrV alloy. The hydrogen storage capacity of the alloy is measured up to 10 cycles and a stable absorption capacity of 3.5 wt.% is found after few cycles. It is found that there is a 20% decrease in the hydrogen absorption capacity after the third cycle, which remains almost constant for the successive cycles [37].

Figure 7.*Cyclic hydrogen absorption capacity of* Ti₂*CrV alloy at room temperature [Int. J. of Hydrogen Energy,* **37***,* 3677 (2012)].

Though the alloy shows promises due to its high hydrogen storage capacity, but the desorption temperature of the alloy is on the higher side for practical application. This type of alloy is relevant for stationary applications and the separation of hydrogen from gaseous mixtures at medium to high temperatures, but not useful for

12

transport application. For vehicular application, hydrogen storage material should have lower hydrogen desorption temperature and high effective storage capacity. The hydrogen storage properties Ti-Cr-V based system can be tuned with substitution of Ti by other late d-block transition metal elements like Fe, Co and Ni. These late d-block transition metal elements have more numbers of d-electrons, so they generally decrease the hydrogen desorption temperature by decreasing the stability of the hydride [38-40]. We have studied the influence of Fe, Co Ni and Sn substitution for Ti in Ti₂CrV alloy. We have evaluated the structure, homogeneity, hydrogen storage capacities, pressure composition isotherm, and the desorption profile of $Ti_{19}CrVM_{01}$ (M= Fe, Co, Ni and Sn) alloys and Ti₁₈CrVM_{0.2} (M= Co and Ni) alloys [41]. The maximum hydrogen absorption capacities are found to be 4.13, 4.01 4.26, 3.34, 3.84 and 4.00 wt% respectively for the Ti_{1.9}CrVFe_{0.1}, Ti_{1.9}CrVCo_{0.1}, Ti_{1.9}CrVNi_{0.1}, Ti_{1.9}CrVSn_{0.1} Ti₁₈CrVCo₀₂ and Ti₁₈CrVNi₀₂ alloys at room temperature. The decomposition temperatures of the hydrides decrease as we go from Fe to Ni substitution with decrease in hydrogen absorption capacity except the Sn substituted alloy and the reduction in desorption temperature increases with increase in concentration of substituent. The study on Sn substituted alloy reveals that the hydrogen absorption capacity decreases with Sn substitution and hydrogen desorption temperature increased significantly. The present study revealed that among the studied alloys, Ni substituted alloy shows a marginal decease in the storage capacity compared to Ti₂CrV alloy whereas the decomposition temperature of the hydride decreases drastically, which is very much essential for practical application.

Both vanadium and niobium belong to the same group (Group V), vanadium being a 3d transition metal whereas niobium to 4d series. In addition, enthalpies of formation of hydrides for Nb and V are almost same. It will be interesting to see the effect of replacing vanadium by niobium on the hydrogen storage characteristics in Ti based bcc alloys. The maximum hydrogen absorption capacity of Ti₀₆₇Nb₀₃₃ alloy was found to be 1.76 wt%. From the Ellingham diagram, it is evidenced that the oxygen partial pressure needed to form Ti and Nb oxides are very low; as a result, they have high affinity towards oxygen. Due to the formation of oxide layer on the alloy surface, the hydrogen absorption rate is slow [42, 43] for the Ti-Nb alloy. Nedyakha et al. [44] have shown that, when Fe is added as an additional element to Ti-Nb alloy, its oxidation resistance is greatly improved. Based on the previous studies, iron was incorporated to improve the hydrogenation behavior of Ti_{0.67}Nb_{0.33} alloy. The Fe substituted alloys show higher hydrogen uptake

compared to parent Ti-Nb alloy. Moreover, the kinetics of hydrogen absorption has also improved which can be explained in terms of trapping energy at subsurface sites. The bonding of the trapped hydrogen at the subsurface sites of Nb is stronger than chemisorption, and hydrogen becomes tightly bound below the first few layers which results in the slow diffusion of hydrogen into the bulk. This is reflected as poor hydrogen absorption kinetics of Ti_{0.67}Nb_{0.33} alloy. The subsurface acts as a valve and regulates the passage of hydrogen from the surface to the bulk. Due to partial substitution of Nb by smaller atom Fe, strain is generated in the ternary alloys Ti_{0.67}Nb_{0.33x}Fe_x (x = 0.13, 0.20) which helps to open the "valve" by reducing the subsurface trapping energy. This results in faster rate of hydrogenation reaction in Fe substituted Ti-Nb alloys. Fig. 8 presents the rate of hydrogenation for Ti_{0.67}Nb_{0.33-x}Fe_x (x = 0.00, 0.13, 0.20) alloys as change of reacted fraction (ζ) with time. ζ is obtained from the ratio $\zeta = (P - P(t))/(Q - P(t))$ $(P - P\infty)$ where P is the initial pressure of the reaction. P(t) and $P\infty$ are the pressures at time t and final equilibrium, respectively.

Figure 8. Kinetics of hydrogen absorption for $Ti_{0.67}Nb_{0.33-x}Fe_x$ (x = 0.00, 0.13, 0.20) alloys at RT [Journal of Alloys and Compounds ,585, 120 (2014).]

In Ti_{0.67}Nb_{0.33-x}Fe_xseries, Ti_{0.67}Nb_{0.13}Fe_{0.20} shows maximum hydrogen absorption capacity and fastest absorption kinetics. Hence, we explored the hydrogenation kinetics of this alloy in detail. Two different types of rate equations were required to fit the kinetic data, indicating two different rate determining steps (rds) during the progress of hydriding reaction. The solid-gas reaction in the (*a* + β) mixed phase region and three dimensional diffusion of hydrogen in the β -phase region are the two rate determining steps, and the activation energies for these two processes are 7.34 and 15.1 kJ/mol, respectively [45].

AB₂ Laves phases are a class of alloy that is considered to be promising candidates as hydrogen storage materials and

negative electrodes for Ni-MH batteries. It is well known that many of the pseudo binary compounds like AB₂show excellent hydrogen absorption- desorption properties and can be considered as potential hydrogen storage materials [46, 47]. Many of them can absorb three hydrogen atoms per molecule and exhibit a desorption plateau pressure of around 1 atm. at room temperature. Zr-based AB₂ alloys are of interest, because of their good storage capacity, fast kinetics and easy activation compared to LaNi₅ systems. Their thermodynamics and the electrochemical properties of the Laves phase compounds $Zr_{1-x}T_xM_{2-y}N_y$ (T = Ti, Y, Hf, Sc, Nb& M/N = V, Cr, Mn, Fe, Co, Ni, Cu, Al, Sn, Ge) can be manipulated easily by substitution [47-51].

ZrFe₂ can absorb only a little amount of hydrogen forming solid solution due to the unfavorable thermodynamics. But the thermodynamic properties can be changed drastically by doping V in place of Fe in ZrFe₂ compound. It was found that with the increase in V content the hydrogen absorption capacity increases significantly due to the decrease in the 3d occupation number in the transition elements. The hydrides, i.e., $ZrFe_{1.8}V_{0.2}$, $ZrFe_{1.6}V_{0.4}$ and $ZrFe_{1.4}V_{0.6}$, $ZrFe_{1.2}V_{0.8}$ absorb 2.52, 3.26, 3.61 and 3.78 H/formula unit, respectively. The plateau pressure for hydrogen absorption decreases significantly with increase in the V content, indicating higher thermodynamic stability of the hydrides [52].

The formation enthalpies of the hydrides were found out from the van't Hoff plot and the enthalpies of formation of the hydrides have been found out from the slope. It is seen that with increase in the V content the formation enthalpy becomes more and more negative indicating more stable hydrides [Fig. 9].

Figure 9. The variation of enthalpy of formation of $ZrFe_{2-x}V_x$ (x = 0.2, 0.4, 0.6, 0.8) [Intermetallics 51 30 (2014)]

The increase in the stability of the hydrides with V substitution was also reflected in the temperature programmed desorption profile, which shows that with increase in the V content the desorption temperature increases.

Though transition metal hydrides provide high volumetric densities, good kinetic and thermodynamic properties and long term cyclic stability, the gravimetric storage capacities are lower in most of the cases. It is likely that the use of metal hydride in hydrogen storage will be confined to small applications, because of the low energy density and the cost. Due to the high volumetric densities, the metallic hydrides can be used for advanced fuel cell driven submarines, prototype passenger ships, forklifts as well as auxiliary power unit in laptops.

5. Mg-based hydrogen storage materials

Light metal hydrides, including Li, Al and Mg, are considered to have potential in the vehicular application due to high gravimetric hydrogen storage capacities. Mg can form MgH₂ with a maximum hydrogen storage capacity of 7.6 wt. %. Furthermore, magnesium is cheap and its ore is abundantly available. It has a medium reactivity towards air and oxygen, which is an advantage over most other light-weight metal hydrides. But the major barrier towards its application as hydrogen storage material is that, it shows a quite sluggish kinetics of hydrogen absorption-desorption, which is mainly diffusion control. The high thermodynamic stability of MgH₂ results in a relatively high desorption enthalpy of 75 kJ.mol [H₂]⁻¹ at standard conditions, which corresponds to an equilibrium temperature of 561 K for H₂- desorption at 1 bar H₂. For practical use of MgH₂ as a reversible hydrogen storage material, both the hydrogen sorption rates and the desorption temperatures have to be improved.

In case of bulk Mg, the diffusion of hydrogen atom towards the bulk is very slow. Again after MgH₂ formation, the diffusion of hydrogen becomes much slower. It is documented that the diffusion of hydrogen through MgH₂ is 5000 times slower than pure Mg metal at 350°C [53]. One of the approaches to increase the hydrogen absorption-desorption kinetics is ball milling the Mg powder or the MgH₂ powder. In many reports ball milling has been used successfully as a mean to increase the kinetics [54-57]. By ball milling, the initial powders get heavily deformed and fractured, and slowly with time the particle size decreases. With ball milling, the diffusion path length decreases and the volume fraction inside crystallite becomes less, so the hydrogen diffusion rate increases, as a result, both the hydrogen absorptiondesorption rate increases. However, thermodynamics are not affected by such techniques, hence the desorption temperature of MgH, is not lowered.

Alloying or doping techniques are able to lower the desorption temperature of MgH₂ by 30-100 K, but this is accompanied by a lower hydrogen storage capacity due to the added weight [58-61]. Addition of catalytic elements like Pd, transition metal elements, Nb, can improve the kinetics of hydrogen absorption by easing the dissociation of hydrogen molecule on the Mg surface. By addition of suitable catalyst, Mg can absorb hydrogen at relatively faster rate at room temperature. Recently, metal oxide catalysts (Nb₂O₅ V₂O₅, Mn₂O₃, Cr₂O₃, Al₂O₃, TiO₂ etc.)also have drawn much attention, as they also can improve the kinetics of hydrogen absorption in Mg based systems and the catalytic activity found to retain even up to 1000 cycles [62]. Lower desorption temperatures have also been reported for other bulk phases of magnesium hydride, such as, sputtered thin films of Mg [63-69] highly amorphous Mg etc. [59,70]. Moreover, decrease in the particle size has been shown to have a favorable effect on the hydrogen desorption temperature of metal doped magnesium hydrides [71-73]. These results indicate that, after doping, due to the distortions of the MgH₂-lattice, there is a shift in the desorption temperature and enthalpy value [74-83].

6. Summary

In the present paper we have discussed the thermodynamic properties of the metal hydrides and their application as a hydrogen storage material. The van't Hoff plot has been discussed in detail and the methods have been described by which the enthalpy of formation of the metal hydride can be calculated. Several examples have been discussed where doping was shown to change the thermodynamic and hydrogen desorption properties of the metal hydride.

References

- 1) P. Chen, Z. Xiang, J. Z. Luo, and K. L. Tan, *Nature* (London) 420 (2002) 302.
- N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keefe, and O. M. Yaghi, *Science* 300 (2003) 1127.
- 3) L. Schlappbach and A. Zuttel, *Nature* (London) 414 (2001) 353.
- Zuttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmenegger, L. Schlabach. Int J Hydrogen Energy, 27 (2002) 203.
- L. Zaluski, A. Zaluska, J. O. Ström-Olsen, J Alloys Compds. 253-254 (1997) 70.
- R. Genma, N. Okada, T. Sobue, H. H. Uchida, Int J Hydrogen Energy 31 (2006) 309.
- G. Sandrock, K. Gross, G. Thomas, J Alloys Compds., 339 (2002) 299.
- J. Li, S. Cheng, Q. Zhao, P. Long, D. Dong, Int J Hydrogen Energy, 34, (2009) 1377.
- 9) S. J. Yang, J. H. Cho, K. S. Nahm, C. R. Park, *Int J Hydrogen* Energy, 35 (2010) 13062.

- B. Sakintuna, L. D. Farida, H. Michael. Int J Hydrogen Energy, 32 (2007) 1121.
- 11) W. Grochala and P. P. Edwards, *Chem. Rev.* 104 (2004) 1283.
- George G. Libowitz, "The solid state chemistry of binary metal hydrides", *The Physical Inorganic Chemistry Series*, (ed) W. A. Benjamin, 1905
- 13) K. H. J. Buschow, P. C. P. Bouten, A. R. Miedema, "Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys", *Report Prog. Phys*, vol. 45; (1982)J. Alper, Science, 299 (2003) 1686.
- D. A. J. Rand & R. M. Dell, Hydrogen Energy Challenges and Prospect, pp 146
- 15) J. Kleppa, M. E. Melnichak and T. V. Charles, J. Chem. Thermodyn., 5 (1973) 595.
- S. Bowerman, C. A. Wulff and T. B. Flanagan, *Phys. Chem.* (*Wies&baden*) 16 (1979).
- 17) H. Wenzl and E. Lebsanft, J. Phys. F, 10 (1980) 2147.
- 18) J. J. Murray, M. L. Post and J. B. Taylor, J. Less-Common Met., 73 (1980) 33.
- 19) J. J. Murray, M. L. Post and J. B. Taylor, Journal of the Less-Common Metals, 80 (1981) 201.
- S. Corre, M. Bououdina, D. Fruchart, G. Adachi, J. Alloys. Compds.,275 (1998) 99.
- 21) S. Corre, *Ph. D. Thesis*. University Joseph Fourier, Gronoble, 1999
- 22) J. J. Reilly, R. H. Wiswall, Inorganic Chemistry, 13(10), (1974) 218.
- 23) L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, R. J. Schulz, Mater. Sci.31 (1996) 695.
- 24) K. Nomura and E. Akiba, "Hydrogen Absorbing Desorbing Characterisation of the Ti-V-Fe alloy system", *Jr of Alloys and Compds* 231 (1995) 513.
- Hongge Pan, Rui Li, Yongfeng Liu, MingxiaGao, He Miao, Yongquan Lei, Qidong Wang, Jr Alloys and Compds, 463 (2008) 189.
- 26) Jing Mi, XiumeiGuo, Xiaopeng Liu, Lijun Jiang, Zhinian Li, Lei Hao, and Shumao Wang, Jr of Alloys and Compds, 485, 324 (2009).
- 27) X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, International Journal of Hydrogen Energy, 31 (2006) 1176.
- 28) M. Jing, L. Fang, L. Xiaopeng, J. Lijun, L. Zhinian, W. Shumao, *Journal of Rare Earths*, 28(5), (2010) 781.
- 29) J.-L. Bobet, B. Chevalier and D. Fruchart, Solid State Phenomena,170 (2011) 144.
- Jeong-Hyun Yoo, Gunchoo Shim, Sung-Wook Cho, and Choong-Nyeon Park, International Journal of Hydrogen Energy, 32 (2007) 2977.
- Z. Hang, X. Xiao, K. Yu, S. Li, C. Chen, L. Chen, International Journal of Hydrogen Energy, 35(5) (2010) 8143.
- 32) M. Okada , T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, Journal of Alloys and Compounds, 330 (2002) 511.
- Masachika Shibuya, Jin Nakamura, HirotoshiEnoki, EtsuoAkiba, Journal of Alloys and Compounds, 475 (2009) 543.

- 34) Z. Dehouche, M. Savard, F. Laurencelle, J. Goyette, Journal of Alloys and Compounds, 400 (2005) 276.
- 35) Y. Nakamura and E. Akiba, *Journal of Alloys and Compounds*, 509 (2011) 1841.
- 36) Seemita Basak, K. Shashikala, P. Sengupta, S.K. Kulshreshtha, International Journal of Hydrogen Energy, 32 (2007) 4973.
- 37) Asheesh Kumar, K. Shashikala, Seemita Banerjee, J Nuwad, Priyanka Das, C.G.S. Pillai, Int. J. of Hydrogen Energy, 37 (2012) 3677.
- 38) Fuda T, Matsumoto K, Tominaga Y, Tamura T, Kuriiwa T, Kamegawa A. Effects of additions of BCC former elements on protium absorbing properties of Cr–Ti–V alloys. *Mater T JIM*,;41 (2000) 577-580.
- 39) Yoo JH, Shim G, Park CN, Kim WB, Cho SW. Int J Hydrogen Energy, 34(22) (2009) 9116.
- 40) K. Shashikala, Seemita Banerjee, Asheesh Kumar, M.R. Pai, C.G.S. Pillai, International Journal of Hydrogen Energy, 34 (2009) 6684.
- Asheesh Kumar, Seemita Banerjee, C.G.S. Pillai, S. R. Bharadwaj, *International Journal of Hydrogen Energy*, 38 (2013) 13335.
- 42) X.B. Yu, W. Zu, T.Z. Huang, J.Z. Chen, B.J. Xia, N.X. Xu, International Journal of Hydrogen Energy, 29 (2004) 81.
- L. Wuhui, W. Erdong, Journal of Alloys and Compounds, 511 (2012) 169.
- I.M. Nedyakha, V.G. Chernyi, Soviet Materials Science 2 (1968) 457.
- 45) PriyankaRuz, Asheesh Kumar, Seemita Banerjee, S.S. Meena, C.G.S. Pillai, *Journal of Alloys and Compounds* 585 (2014) 120.
- 46) M. Bououdina, J. L. Soubeyroux, D. Fruchart, P. De. Rango, Journal of Alloys and Compounds, 257 (1997) 82.
- M. Bououdina, J. L. Soubeyroux, P. De. Rango, D. Fruchart, International Journal of Hydrogen Energy, 25(11), (2000) 1059.
- BillurSakintuna, Farida Lamari-Darkrim, Michael Hirscher, International Journal of Hydrogen Energy, 32 (2007) 1121.
- M. Bououdina, J. L. Soubeyroux, D. Fruchart, International Journal of Hydrogen Energy, 22(2-3) (1997) 329.
- M. Bououdina, J. L. Soubeyroux, D. Fruchart, *Journal of Alloys* and Compounds, 327 (1-2) (2001) 290.
- M. Bououdina, J. L. Soubeyroux, D. Fruchart, P. De. Rango, Journal of Alloys and Compounds, 327(1-2) (2001) 185.
- 52) S. Banerjee, Asheesh Kumar, C.G.S. Pillai, *Intermetallics*, 51 (2014) 30.
- 53) J. Topler, H. Buchner, H. Saufferer, K. Knorr, W. Prandl, Less Common Metals, 88 (1982) 397.
- 54) C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001). T. Klassen, W. Oelerich, R. Bormann, *Material Science Forum*, 360-362, (2001) 603.
- 55) T. Klassen, W. Oelerich, R. Bormann, *Journal of Metastable and Nanocrystalline Material*. 10 (2001) 603.
- 56) Zaluska, L. Zaluski, J. O. Ström-Olsen, Journal of Alloys and Compounds. 289 (1999) 197.
- 57) J. Huot, S. Boily, E. Akiba, R. Schulz, *Journal of Alloys and Compounds*, 280 (1998) 306.

- 58) Zaluska, L. Zaluski, & J. O. Strom-Olsen, Applied Physics a-Materials Science & Processing, 72 (2001) 157.
- 59) K. Higuchi, Journal of Alloys and Compounds, 295 (1999) 484.
- 60) J. Chen, Chemistry of Materials, 14 (2002) 2834.
- S. Orimo, & H. Fujii, Applied Physics a-Materials Science & Processing, 72 (2001) 167.
- 62) W. Oelerich, T. Klassen, R. Bormann, Journal of Alloys and Compounds, 315 (2001) 237.
- G3) J. Huot, G. Liang, & R. Schulz, Applied Physics a-Materials Science & Processing 72 (2001) 187.
- 64) G. Liang, J. Huot, S. Boily, A. Van Neste, & R. Schulz, Journal of Alloys and Compounds, 291 (1999) 295.
- H. G. Schimmel, Towards a hydrogen-driven society? *Thesis*, Delft University of Technology 2004.
- 66) R. Yavari, J. F. R. de Castro, G. Vaughan, & G. Heunen, Journal of Alloys and Compounds, 353 (2003) 246.
- 67) P. Vajeeston, P. Ravindran, A. Kjekshus, & H. Fjellvag, *Physical Review Letters*, 89 (2002) 1755061.
- 68) P. Wang, H. F. Zhang, B. Z. Ding, & Z. Q. Hu, Journal of Alloys and Compounds, 313, (2000) 209.
- K. Higuchi, et al. Journal of Alloys and Compounds, 330 (2002) 526.
- 70) K. Higuchi, Journal of Alloys and Compounds, 295 (1999) 484.
- T. Zaluski, A. Zaluska, & J. O. Strom-Olsen, Journal of Alloys and Compounds, 253 (1997) 70.

- 72) R. A. Varin, L. Guo, S. Li, C. Chiu, & A. Calka, NATO Science Series, II: Mathematics, Physics and Chemistry, 146 (2004) 67.
- 73) T. Czujko, R. Varin, J. Bystrzycki, Z. Bojar, & T. Kaldonski, Biuletyn Wojskowej Akademii Technicznej, 52 (2003) 107.
- 74) H. Fujii, & S.-I. Orimo, *Physica B: Condensed Matter* (Amsterdam, Netherlands) 328, (2003) 77.
- 75) T. Vegge, L. S. Hedegaard-Jensen, J. Bonde, T. R. Munter, & J. K. Norskov, Journal of Alloys and Compounds, 386 (2005) 1.
- 76) S. V. Alapati, J. K. Johnson & D. S. Sholl, J. Phys. Chem. B,110 (2006) 8769.
- 77) J. J. Liang & N. Khosrovani, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49 (2004) 152.
- 78) J. J. Liang, Applied Physics A: Materials Science & Processing, 80 (2005) 173.
- 79) F. W. Bach, M. Schaper, C. Jaschik, Pts 1 And 2, (2003) 1037.
- P. H. L. Notten, et al., *Journal of Power Sources*, 129 (2004) 45.
- Seemita. Banerjee, C. G. S. Pillai, and C. Majumder, *Journal of Chemical Physics*, 129 (2008) 174703.
- 82) S. Banerjee, C. G. S. Pillai, and C. Majumder; *Journal of Physical Chemistry C*, 113 (2009) 10574.
- 83) S. Banerjee, C.G.S. Pillai, C. Majumder. International Journal of Hydrogen Energy, 35 (2010) 2344.

Material Challenges in Renewable Hydrogen Production

A.M. Banerjee, M.R. Pai, A.K. Tripathi* and S.R. Bharadwaj

*Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 *corresponding author e-mail: catal@barc.gov.in*

Abstract

Hydrogen, the most abundant element in the universe, does not occur freely on our planet and has to be derived from its combined forms such as water, fossil fuels, hydrocarbons and biomass and the process is energy intensive. Various processes used for hydrogen production can be divided under three categories: thermal, electrolytic, and photolytic. An attempt is made here to present an overview of the renewable hydrogen production technologies and the challenges associated with them that need to be overcome to realize the full potential of this clean energy carrier for sustainable energy supply in the future.

1. Introduction

Exploration of alternate energy resources has attained great significance in recent times due to ever-increasing worldwide energy demands, depleting fossil resources and growing concern about global warming due to emission of greenhouse gases (GHG). Viable energy options available today are fossil fuels, hydroelectric, nuclear, solar, wind, geothermal etc. For many applications like in transport sector, usages of a clean and sustainable energy/fuel is in great demand today. Hydrogen is a clean and renewable energy carrier which offers a promising alternative to the fossil fuels, particularly for the transport applications using fuel cell technology. As hydrogen does not occur freely on the earth and is predominantly present as water, fossil fuels and biomass, its production from these sources is energy intensive. Presently, most of the hydrogen required for the consumption by various industries (fertilizer, refinery, electronics, metal, food, etc.), is produced from fossil fuels (~ 96%) using thermal processes like steam methane reforming (SMR), partial oxidation, and gasification of coal or biomass. These processes, however, suffers from a major drawback i.e. generation of CO₂, a green house gas, as a by-product. The technology for producing hydrogen from a variety of resources, including renewable, is widely investigated [1-3]. Hydrogen production by these processes, however, is costly as compared to SMR. In this context a threshold cost goal for hydrogen production (including its delivery and supply) has been set by the U.S. Department of Energy at \$2.00-\$3.00 kg⁻¹ so as to make it cost competitive with the petroleum fuels.

2. Hydrogen Production Processes

Hydrogen production processes can be broadly classified into three general categories namely thermal, electrolytic, and photolytic [1-4]. These processes along with the raw materials and energy sources used are listed in Table 1.

2.1 Thermal Processes

Thermal processes for hydrogen production can be further divided in to two types: one in which energy is used to release hydrogen from various resources, such as natural gas, coal, biomass, liquid fuels, while in other heat (500 - 2000 °C), in combination with closed-chemical cycles also known as thermochemical cycle, produces hydrogen through a series of chemical reactions involving fully recyclable intermediates from renewable resources such as water.

2.1.1 Hydrogen from Fossil Fuels

Steam methane reforming, partial oxidation, autothermal reforming and gasification of coal/biomass primarily constitute the first type of thermal processes and these accounts for about 96 % of world's hydrogen production today [3-6]. We will briefly discuss here hydrogen production processes involving natural gas and coal.

• Hydrogen from natural gas

Hydrogen is produced from natural gas (major component: methane) by three different chemical processes namely steam methane reforming (SMR), partial oxidation (POX) and autothermal reforming (ATR). SMR involves endothermic conversion of methane and water vapour into hydrogen and carbon monoxide in presence of a nickel catalyst. In addition desulfurization catalysts such as bi-metallic Co-Mo and ZnS are used to remove the sulphur impurity from the methane feed-gas. Among the three processes SMR needs a lower operating temperature (700 - 850 °C), is more efficient (65-80%), does not require oxygen, and yields product with high H_2/CO ratio (3:1). It does have the highest emissions of the three processes. In POX hydrogen is produced by partially oxidizing (combusting) the hydrocarbon with oxygen. POX being an exothermic process does not require any external heat

Process		Raw Materials	Energy Sources	
Thermal Steam Reforming N		Natural Gas/hydrocarbons and water	Combustion of natural gas/syngas Concentrated solar thermal power/ Nuclear heat	
	Gasification	Coal/carbonaceous materials/ biomass and water	Combustion of coal/ carbonaceous materials/syngas/ biomass Concentrated solar thermal power	
Decomposition		Natural gas/fossil fuel hydro- carbons/biomethane/bio-hy- drocarbons	Natural Gas combustion Concentrated solar thermal power	
	Thermolysis	Water	Concentrated solar thermal power	
	Thermochemical cycles	Water	Concentrated solar thermal power Nuclear heat	
Electrolytic	Electrolysis/High tem- perature steam electroly- sis	Water	Electricity from renewable energy source (wind, geothermal, solar, hydro) Electricity from non-renewables (fossil fuels, nuclear)	
Photolytic	Photocatalytic/Photo- electrochemical	Water with/without sacrificial agents	Solar radiation	
	Photobiological	Microbial and water	Solar radiation	

source and a catalyst for operation and produces a product mix with H_2/CO ratio (1:1 to 2:1). Besides this POX has minimal methane slip (loss), is more sulfur tolerant than the other processes and can be applied to a wide range of hydrocarbons including natural gas, heavy oils, solid biomass, and coal. Autothermal reforming is a combination of both SMR and POX where partial oxidation provides the heat and steam reforming increases the hydrogen production. ATR is normally carried out at temperatures in range 950 to 1100 °C and pressure as high as 100 bar. Both POX and ATR require an oxygen separation unit in order to feed pure oxygen to the reactor otherwise the product will be diluted with nitrogen (if air is used). Various chemical reactions occurring during reforming include:

$$CH_4 + H_2O + heat \rightarrow CO + 3H_2$$
 (SMR) (1)

 $CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2 + heat$ (POX) (2)

Carbon monoxide generated in each of the three processes is reacted with steam to generate hydrogen via water-gas shift reaction (WGS). Normally two types of water-gas-shift reactors one operating at high temperatures (above 350 °C usually with iron catalyst) and the other at low temperatures (210 - 330 °C often with copper catalyst) are employed to improve the hydrogen yield [3].

$$CO + H_2O \rightarrow CO_2 + H_2 + heat$$
 (WGS) (3)

 CO_2 from the product gas (after WGS) is removed by an alkaline-based solution (typically alkanolamines such as methyldiethanolamine) via chemical absorption and the resulting hydrogen-rich gas is further purified via pressure swing adsorption (PSA). Such purification steps, however, add to the production costs and reduce the total efficiency [4].

Hydrogen from coal gasification

Hydrogen can be produced from coal through a variety of gasification processes (e.g. fixed bed, fluidised bed or entrained flow). In this process, pulverised coal reacts with air or oxygen (produced in an air separation unit) and steam at high temperatures in a gasifier, producing raw gas, which is composed of H₂ and CO along with CO₂, some CH₄ and residual steam (C(s) + O₂ + H₂O + heat \rightarrow CO + CO₂ + H₂). In addition, carbonyl sulphide (COS), hydrogen sulphide (H₂S) and other impurities are also present in the raw gas. The raw gas is treated with processes similar to those described in natural gas steam reforming to produce a stream of hydrogen, CO and CO₂. The CO is further reacted with steam to produce H₂ through water-gas shift reaction (Eqn.3).

Compared to steam reforming, coal gasification process is more complex as it requires: (i) more extensive feedstock pre-treatment (such as grinding of coal and drying or preparing a feeding coal-slurry depending on the gasifier type), (ii) an air separation unit for the production of oxygen for oxygen-blown gasifiers, (iii) multi-stage cleaning of raw syngas (e.g. removal of particulate matter, dust, sulphur) and (iv) further syngas treatment in addition to CO conversion [5].

Material challenges for H, production from fossil fuels

Emission of carbon dioxide still remains a major challenge to make the fossil fuels based hydrogen production processes a zero-emission one. Various CO₂ capture and storage (CCS) technologies including (i) use of deep saline reservoirs, (ii) injection of CO, into depleted oil for storage and to enhance oil recovery and (iii) injection into the deep ocean are being explored for this purpose [7]. Also, hydrogen needs to be further purified (to remove the small amount of CO) to make it suitable for the PEM (Proton Exchange Membrane) Fuel Cells applications. This requires development of (a) better catalysts for preferential oxidation of CO [8] and (b) suitable membrane technologies to separate and purify the H_2 from the gas stream [9]. Similarly alternate desulfurization technology needs to be developed for selective alkylation of organo-sulfur molecules present in the fossil fuels. Japan Atomic Energy Research Institute (JAERI) proposes to use a nuclear reactor for supplying heat (800-900 °C) to the steam reforming process which will avoid reactant (methane) loss [10].

2.1.2 Hydrogen from biomass

Hydrogen-rich gas can be derived from the biomass via two routes, (a) Thermochemical conversion, and (b) Bio-chemical/biological conversion. The choice of process depends upon the type and quantity of biomass feedstock [4]. We consider here the thermochemical conversion method here while the later procedure is presented under photolysis section. Thermo-chemical conversion is further divided in to (i) pyrolysis followed by reforming, (ii) conventional gasification, and (iii) Super critical water gasification.

Pyrolysis (thermal decomposition in an inert atmosphere) of biomass at 500-600 °C yields char, condensable liquids (tar, oils or bio-oils) and noncondensable gases (Biomass \rightarrow Bio-oil + Char + Gas). Bio-oil is a mixture of carboxylic acids (mainly acetic and formic), aldehydes and alcohols, and lignin-derived methoxy phenolics (denoted as pyrolytic lignin), present as a low- to medium-molecular weight material. Its composition depends on raw material, the reactor, process conditions (temperature, residence time, and heating rate), and efficiency of the condensation system [11]. Bio-oil can be catalytically steam reformed to hydrogen and CO₂ at 750-850 °C as per the following reactions:

$$Bio-oil + H_2O \to CO + H_2 \tag{4}$$

$$CO + H_2O \rightarrow CO_2 + H_2 \tag{5}$$

Hydrogen yield from biomass by pyrolysis/reforming process using a nickel based catalyst is reported to be ~ 11.2 wt% (based on weight of biomass; 17.2 g Hydrogen 100 g⁻¹ bio-oil) which is comparable to that observed with gasification [11].

Gasification of biomass produces combustible gas mixture (CO and H_2 with some CO₂, water and other hydrocarbons including methane) via partial oxidation at high temperatures (800 to 900 °C). The char produced during fast pyrolysis of biomass is gasified with the help of gasifying agents namely air, oxygen or steam. Various reactions occurring during this process are as follows:

Biomass + Air \rightarrow H₂ +CO₂ + CO + N₂ + CH₄ + Light and heavy HC + Tar + H₂O + Char (Gasification) (6) Biomass + Steam \rightarrow H₂ + CO + CO₂ + CH₄ + Light and heavy HC + Tar + Char (Steam gasification) (7)

Florin and Harris reported an effective use of calcium oxide as a sorbent for CO_2 capture to increase the hydrogen yield during steam gasification of biomass [12].

As the name suggests super critical water gasification employs water in super critical state (22.1 MPa and 374 °C), where it reacts with the biomass to form CO and which upon reaction with steam produces CO_2 and hydrogen by water gas reaction. This process is highly suitable for biomass with high moisture content (>50%) but it is quite expensive.

2.1.3 Hydrogen from Thermo-chemical splitting of water

Water an inexhaustible source of hydrogen is quite stable. Thermolysis of water into elemental hydrogen and oxygen requires a temperature in excess of 2500°C $(H_2O \rightarrow H_2 + \frac{1}{2}O_2; \Delta G^0 = 237 \text{ kJ/mol})$ [13, 14]. Moreover, the problems associated with construction materials for the reactor, effective separation of reaction products (H₂ and O_2 and prevention of their recombination are quite difficult to overcome to realize water thermolysis. Water, however, can be decomposed at comparatively lower temperatures (~ 1000 °C) employing thermochemical cycles where water is decomposed through a series of chemical reactions involving intermediates that are fully recyclable. The concept of thermochemical production of hydrogen from water was first studied thermodynamically in the 1960s [13]. High temperature processes for hydrogen production are attractive from an efficiency perspective considering the second law of thermodynamics, from which is derived $\eta = (1 - T_{c}/T_{H})$, where T_c and T_H are the

cold and hot temperatures, respectively. However, some processes may require an input of electrical or mechanical energy. The global process efficiency will then be:

$$\eta = \left(\frac{HHV}{Q + Wel/\eta el}\right)$$

where, HHV is W_{el}/η_{el} r heating value of hydrogen, 286 kJ/mol (energy gamea from burning hydrogen in oxygen at ambient conditions, with the initial and final conditions the same at 1 bar and 25 °C), Q - heat required to produce hydrogen, W_{el} - electrical work, η_{el} – efficiency of electricity production.

More than 200 thermochemical cycles have been reported. Notable among these are Sulfur-Iodine cycle, Hybrid Sulphur cycle, Copper-Chlorine, Calcium-Bromine, ZnO/Zn chemical cycle. Some of the representative thermochemical cycles with reaction steps involved and operating temperature are included in Table 2. Heat required for high-temperature water splitting can be provided by high temperature nuclear reactor (up to about 1000 °C) or solar concentrators (up to about 2000 °C). The major advantage of thermochemical cycles is that they produce hydrogen with near-zero green house gas emissions.

• Solar-driven thermochemical processes

Solar hydrogen production from water employing thermochemical cycles shows great promise as one of the long-term alternatives to fossil fuels. Use of concentrated solar radiation as the source of high-temperature process heat has been reported for hydrogen generation in twostep thermochemical cycle based on metal oxide redox pair [14]. Such cycles proceed with endothermic reduction of a metal oxide at high temperature (above 1300 °C). Then, the reduced oxide or the metal reacts directly with water (exothermic hydrolysis) at lower temperature to generate hydrogen, which reforms the initial metal oxide. The two steps involved are:

 $MO_{ox} \rightarrow MO_{red} + \frac{1}{2}O_2$ (T > 1300 °C) (8) $MO_{red} + H_2O \rightarrow MO_{ox} + H_2$ (T < 1000 °C) (9)

Some of the reported metal/metal oxide redox pairs include Mn_3O_4/MnO , Co_3O_4/CoO , ZnO/Zn, Fe_3O_4/FeO , Ce_2O_3/CeO_2 , Nb_2O_5/NbO_2 , In_2O_3/In , WO_3/W , CdO/Cd and TiO_2/TiO_x [14]. Among these, ZnO/Zn cycle has been investigated extensively and efficiency between 29% and 44% with heat recovery is reported [15].

• Nuclear-driven thermochemical processes

The use of high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been largely governed by the type of nuclear reactors and remained focussed on the three thermochemical cycles namely Sulphur– Iodine (S-I), hybrid sulphur (the Westinghouse cycle) and copper-chlorine [16-18]. Thus, countries like USA, Japan, France, Italy, UK, Korea, China and India are pursuing S-I cycle for large scale production of hydrogen using high grade nuclear heat from very high temperature reactor (VHTR), a Generation IV reactor, expected to produce temperatures (~ 900-1000 °C) of higher efficiencies while Canada has focused its efforts on Cu-Cl cycle (Maximum temperatures requirement < 550 °C) with their Generation IV super-critical water cooled reactor (SCWR). Both sulphur – iodine/ hybrid sulphur and

S. No.	Thermochemical Cycle	Reaction steps involved	Temperature (°C)
	Zinc-zinc oxide	a) $ZnO \rightarrow Zn + \frac{1}{2}O_2(g)$ b) $Zn + H_2O \rightarrow ZnO + H_2(g)$	1900 427
	Sulfur-Iodine	a) $I_2(l) + SO_2(g) + 2H_2O(l) \rightarrow 2HI(l) + H_2SO_4(l)$ b) $2HI(g) \rightarrow I_2(g) + H_2(g)$ c) $H_2SO_4(l) \rightarrow H_2O(g) + SO_2(g) + \frac{1}{2}O_2(g)$	70 - 120 300 - 450 700 - 900
	Hybrid Sulfur	a) $SO_2(g) + 2 H_2O + electricity \rightarrow H_2SO_4(l) + H_2(g)$ b) $H_2SO_4(l) \rightarrow H_2O(g) + SO_2(g) + \frac{1}{2}O_2(g)$	80 – 120 (electrolysis) 700 - 900
	Copper - Chlorine	a) $2 \operatorname{Cu}(s) + 2 \operatorname{HCl}(g) \rightarrow 2 \operatorname{CuCl}(l) + H_2(g)$ b) $2 \operatorname{CuCl}(s) \rightarrow 2 \operatorname{CuCl}(aq) \rightarrow \operatorname{CuCl}_2(aq) + \operatorname{Cu}(s)$ c) $\operatorname{CuCl}_2(aq) \rightarrow \operatorname{CuCl}_2(s)$ d) $2 \operatorname{CuCl}_2(s) + H_2O(g) \rightarrow \operatorname{CuO}_2\operatorname{CuCl}_2(s) + 2 \operatorname{HCl}(g)$	430-475 Ambient electrolysis < 100 400 500
		d) $2 \operatorname{Cu}\hat{\operatorname{Cl}}_{2}(s) + \operatorname{H}_{2}O(g) \xrightarrow{2} \operatorname{Cu}O_{*}\operatorname{Cu}\operatorname{Cl}_{2}(s) + 2 \operatorname{HCl}(g)$ e) $\operatorname{Cu}O_{*}\operatorname{Cu}\operatorname{Cl}_{2}(s) \xrightarrow{2} \operatorname{2}\operatorname{Cu}\operatorname{Cl}(l) + \frac{1}{2}O_{2}(g)$	500

Table 2: Some representative thermochemical cycles

copper-chlorine thermochemical process have their relative merits, the former being more efficient (~ 47%) while the later operating at lower temperature has less challenges for equipment material selection and is adaptable to a wider range of heat sources such as geothermal, nuclear, or solar [18]. Some details about the widely investigated sulphur family cycle are presented below. This cycle is actively being pursued at BARC (from 2005 onwards) for large scale hydrogen production and envisages the use the high grade nuclear heat from the proposed compact high temperature reactor (CHTR) to drive the cycle.

S-I thermochemical cycle

Sulfur-Iodine (S-I) thermochemical cycle is widely considered as a potential choice for large scale production of hydrogen due to its higher efficiency (~ 47%), all fluids process and adaptability with a high temperature nuclear reactor (~ 950°C). This cycle, originally proposed by General Atomics, USA, in mid 1970, comprises of three steps viz, Bunsen reaction, sulphuric acid decomposition and hydriodic acid decomposition, as depicted in Fig. 1. The whole process takes in water and high-temperature heat, particularly, in the acid decomposition steps, and releases hydrogen and oxygen while the reactants SO, and iodine are regenerated and recycled in the process. Various factors that influence the efficiency of the S-I cycle are: (a) optimization of Bunsen reaction to achieve phase separation with minimal side reactions, (b) separation of HI from HI-I₂-H₂O azeotropic mixture and its decomposition, and (c) kinetics of sulphuric acid decomposition, the most energy-demanding step of this cycle. Development of suitable catalysts which are active and stable for the decomposition of both acids has stimulated and posed challenges to the catalysis researchers.

Figure 1: Different steps involved in Sulfur-Iodine thermochemical cycle

In 2004, Japan Atomic Energy Agency (JAEA) reported bench scale test of S-I cycle in a glass setup where continuous production of hydrogen at the rate of 32 NLPH was achieved for 20 h [16]. A successful demonstration of a closed glass loop operation of S-I cycle for 20 h producing 30 NLPH H₂ at BARC, this year has made India the 5th nation

in the world to do so [19]. These efforts were supported by the in-house development of an efficient and poison resistant iron oxide based catalysts (Fig. 2) for sulphuric acid decomposition step of the S-I cycle at Chemistry Division, BARC [20]. During this development various oxide/mixed oxides were investigated as a substitute to the noble metal catalyst. Screening results for the different catalysts for sulphuric acid decomposition reaction are presented in Fig. 2 (A). In addition Chemistry Division is developing supported platinum catalysts for liquid phase decomposition of HI [21].

Figure 2: Temperature dependent SO₂ yield during decomposition of sulfuric acid over different catalysts (A) and influence of I/I₂ impurities on SO₂ yield of Fe_{1.8}Cr_{0.2}O₃ (B); Catalysts amount: 0.2 g; acid (liquid) feed rate: 0.05 ml min⁻¹ in N₂ carrier gas (flow rate: 40 cc/min); mole fraction of I/I₂ impurities: $\mathbf{X}_{\text{HI}} = 3.8 \times 10^{-3}$; $\mathbf{X}_{\text{I}_2} = 9 \times 10^{-4}$ in 98 wt % H₂SO₄.

Hybrid Sulphur cycle

The Hybrid Sulphur (HyS) cycle (also known as the Westinghouse cycle) does not involve any iodine and therefore problems associated with the iodine section of S-I cycle are avoided here. This cycle consists of two main steps, the electrolysis of aqueous SO₂ gas at around 80 °C to give hydrogen and sulphuric acid, followed by the sulphuric acid decomposition step similar to that of the S-I cycle as shown in Table-2. Whereas water electrolysis requires a potential of 1.23 V, presence of sulphur dioxide (in water) reduces the required electrode potential to a value of 0.17 V, thus resulting in substantial reduction in the energy required for the process. An efficiency of 47% LHV (55% using HHV) is predicted for HyS cycle [17]. There is ample scope for further improvement by reducing the electrode potential and developing better electro-catalysts, structural materials (stable at the high temperatures), H₂SO₄ decomposition reactor and product separator. Savannah River National Laboratory (SRNL) has recently reported operation of a single cell electrolyser for more than 200 h at a cell temperature, pressure, current density and cell voltage of 80°C, 172 kPa, 500 mAcm⁻² and at 0.76 V, respectively [17].

Material challenges for the thermochemical processes

The technology of solar- and nuclear-driven hightemperature thermochemical water splitting cycles is in early stage of development and has to overcome several challenges like material of construction, heat transfer medium, development of next generation of nuclear reactor technology, thus needs considerable research efforts.

2.2 Electrolytic Processes

Electrolytic processes use electricity to split water into hydrogen and oxygen in an electrolyser without emission of greenhouse gases, provided the source of the electricity used is either a renewable source or a nuclear one. This process is a preferred choice when high purity hydrogen is required. Three different types of electrolysers being used/under development are alkaline, proton exchange membrane (PEM) and solid oxide electrolyte cells (SOEC). The first two are basically low temperature electrolysers which operate at around 80 °C while the operating temperatures in case of SOEC lie in range 500-1000 °C. Salient features of each electrolyser are presented in Table-3. In alkaline electrolyser hydrogen needs to be removed from the water at cathode side through dehumidification while pure hydrogen can be obtained without further separation in PEM electrolyser. On the other hand, hydrogen can be separated from the steam in another stage after leaving the SOEC as shown in Fig. 3.

Figure 3: Schematics of a solid oxide electrolyser.

From thermodynamic point of view operation of electrolysis cells at high temperatures is advantageous as substantial part of the required energy ($\Delta H = W_{elec} + Q = \Delta G + T\Delta S$; W_{elec} is electrical work) is supplied as thermal energy (heat brought in by the steam) and accordingly the primary electric energy demand (ΔG), is considerably reduced. Also, at high temperatures the kinetics of the electrolysis is fast, resulting in reduction in electrical losses

and lower polarisation losses from the electrode reactions). In recent years, steam electrolysis in solid oxide electrolysis cells (SOECs) has received considerable attention due to its high efficiency and possibility to be coupled with renewable resources. Extensive research is on to identify the best materials for use in SOECs. In the meanwhile, materials used in solid oxide fuel cells (SOFCs) are being utilized as the starting point as the SOECs are essentially SOFCs operating in reverse mode. Similarly efforts are on to integrate electrolyser with power generators such as, nuclear, wind and solar power. Idaho National Laboratory (INL) demonstrated a 15 kW integrated laboratory scale facility with a hydrogen production rate of 0.9 Nm³/h [22]. More recently, Li et al [23] reported 500 h operation of a planer SOEC stack comprising of 30 cells (planar cathodesupported Ni-YSZ/YSZ/LSM-YSZ SOEC cells equipped with SUS430 ferritic stainless steel interconnects and glass sealants) at 800 °C and overall hydrogen generation efficiency of ~ 52.7%.

in the cell (due to lower ohmic resistance in the electrolyte

In addition to O²⁻ conducting electrolytes, several proton conducting systems like perovskite-structured $SrCe_1 M_0 O_3$ (M: Y, Yb, Mg, or Sc; x = 0.05 - 0.1) and system based on BaCeO₃, CaZrO₃, SrZrO₃, and BaZrO₃ have been investigated for the steam electrolysis [24]. While most of these materials are O²⁻ conductors in air, they develop proton conductivity in the presence of hydrogen and water. Even though the conductivity of the proton conductors has been improved (with improved processing conditions and through selective doping of material) it remains much lower than the O²⁻ conductivity reported for zirconia or ceria-based materials. Due to issues relating to the electrolyte stability, compatibility with other cell components, low ionic conductivity, and difficulties in processing have delayed the device development based on proton conductors.

Material challenges for the electrolytic processes

As most of the research on SOECs studying performance and durability stays at single cell level, scope for improvement is enormous. Long-term performance degradation (should be less than 1% for 1000 h of operation of the cell) is the biggest challenge for scaling up of high temperature electrolysis technology. This is mainly due to air electrode delamination (most likely caused by the build-up of oxygen partial pressure electrode-electrolyte interface), Cr-vapor poisoning (from Cr-rich alloy interconnects), microstructure degradation (interactions among the cell components causing decrease in conductivity and electrochemical activity), and seal leakage (caused during thermal cycling due to mismatch of coefficient of thermal

Parameters	Alkaline	PEM	SOEC
Operating Temperature (°C)	70 - 90	< 100	500-1000
Electrolyte	KOH _(aq) , NaOH _(aq)	Sulfonated polymers like nafion	Yttria stabilized zirconia (YSZ), Scandia stabilized zirconia, doped ceria, LaSrGaMgO ₃
Conducting ion	OH-	H ⁺	O ²⁻
Cathode material	Ni with Pt catalytic coating	Pt black, IrO ₂ , RuO ₂	Ni-YSZ cermet, Ni,Cu, Co mixed with/electrolyte materials titanate/ceria, noble metals, LaSr(CrMn)O ₃
Cathodic reaction	$2H_2O + 2 e^- \rightarrow H_2 + 2OH^-$	$2H^+ + 2 e^- \rightarrow H_2$	$H_2O + 2 e^- \rightarrow H_2 + O^{2-}$
Anode material	Ni or Cu-coated with metal oxide	Pt black, IrO ₂ , RuO ₂	Perovskite oxides like lanthanum manganate, lanthanum cobalt/ iron oxide (LaSrCoO ₃ , LaSrFeO ₃ , LaSrCoFeO ₃), BaSrCoFeO ₃
Anodic reaction	$2OH^{-} \rightarrow \frac{1}{2}O_{2} + H_{2}O + 2e^{-}$	$H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$	$O^{2-} \rightarrow \mathcal{V}_2 O_2 + 2 e^{-}$
Advantages	Scalable, robust, rapid start- up and shutdown, unlimited thermal cycling capability, can be used with intermittent or widely fluctuating loads, and commercially available (up to $750 \text{ Nm}^3 \text{H}_2/\text{h}$).	Scalable, robust, rapid start-up and shutdown, Unlike alkaline electrolyser, no circulation or replenishment of alkaline solution is required.	Can be used with low-grade waste heat from chemical or power plants or solar thermal energy to reduce the electrical power input and increase efficiency.
Disadvantages	High electrical power con- sumption; high capital cost due to high cost of noble metal electrode.	High electrical power con- sumption; high capital cost due to high cost of noble met- al electrode and membrane materials; degradation and lifetime issues with polymer membranes and cells.	Limitations on construction materials; materials' degrada- tion, and lifetimes; slow start-up and shutdown; limited thermal cycling capability; low level of commercialization.

Table 3: Electrolysers for Hydrogen Generation

expansion between the seal and other components). Also issues pertaining to the electrolyte stability, compatibility with other cell components, low ionic conductivity, and difficulties in processing need to be resolved for the development of SOEC devices (both based on oxide ion and proton conductors). Development of suitable cell components material for electrochemical devices (regenerative fuel cells) which can be used for generating hydrogen during off-peak demand hours and a source of power during peak demand is another challenge to be met.

2.3 Photolytic Processes

Photolytic processes use light (sunlight) energy to split

water into hydrogen and oxygen. The minimum photon energy thermodynamically required to drive the reaction, $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ is ~ 1.23 eV, which corresponds to a wavelength of ca. 1000 nm, in the near infrared region. Accordingly, it would appear possible to utilize the entire spectral range of visible light (400 < λ < 800 nm) which constitutes ~45% of solar spectrum.

Photolytic processes can be further divided in to photoelectrochemical / photocatalytic and photobiological water splitting. Though the photolytic processes are in the very early stages of research, they have long-term potential for sustainable hydrogen production with low environmental impact.

2.3.1 Photocatalytic/photoelectrochemical splitting of water

The famous experiments of Fujishima and Honda on photoelectrochemical splitting of water using n-type semiconducting TiO_2 (rutile) anode photocatalyst in 1972, has opened up the field to the researchers to develop suitable photocatalysts which are efficient and stable and cost-effective in utilizing the solar radiation particularly the visible part of it for hydrogen generation.

Hydrogen production via photocatalytic water splitting can be classified in two types: (i) photochemical-cell reaction (powder catalyst used as suspended particles in solution) form and (ii) photoelectrochemical-cell reaction (catalyst deposited in thin film form on a substrate to form a photo-anode/or photo-electrode). In the second type an external circuit is required to direct the photo-generated electron from photoevolved (similar to electrolysis) while in the first type no external circuit is required and both H₂ and O₂ are evolved in the same cell. We shall be confining our discussion here to the photochemical-cell reaction only.

The three basic steps involved during water splitting on a semiconductor photocatalayst, as shown in Fig. 4, are:

- (i) absorption of photons with energies equal or higher than the semiconductor band gap, leading to the generation of electron hole pairs (*Semiconductor + hv* → h_{vb}⁺ + e_{cb}⁻)
- (ii) charge separation followed by two competitive processes namely migration of these photogenerated carriers in the semiconductor particles and charge recombination at both surface and in the bulk,
- (iii)surface chemical reactions (redox reactions) by which adsorbed species (water molecules) are reduced and oxidised by the photogenerated electrons and holes yielding H₂ and O₂, respectively, $(H_2O + 2h^+ \rightarrow \frac{1}{2}O_2 + 2H^+; 2H^+ + 2e^- \rightarrow H_2)$

The electrons-holes recombination process is greatly influenced by the crystallinity and the particle size of the material (determined by the preparation conditions) and has a strong bearing on the efficiency of a photocatalyst. To prevent the recombination of electron-hole pairs, generally co-catalysts such as Pt, Pd, NiO, and RuO₂ are incorporated in nanodispersed form on the semiconductor surface.

Separation of the electron-hole pairs and their migration is facilitated by an internal electric field which is created at the hetero-junctions formed between the semiconductor and co-catalyst. Co-catalyst plays another important role in creating active sites and reducing the activation energy or over potential for H_2 - or O_2 -evolution reactions on the surface of semiconductors.

anode to a cathode where hydrogen is evolved (similar to electrolysis) while in the first type no external circuit is required and both H_2 and O_2 are evolved in the same cell. We shall be confining our

Following properties (semiconducting and electrochemical) are desired in a good photocatalyst for overall splitting of water: (a) band gap: < 3 eV, preferably around 2.0 – 2.2 eV, (b) suitable band-edge potential for overall water splitting [bottom of the conduction band must be more negative than the reduction potential of water to produce $H_2(H^+/H_2; 0 V vs NHE)$, and the top of the valence band must be more positive than the oxidation potential of water (O_2/H_2O ; 1.23 V vs NHE) to produce O_2] (c) capacity for efficient charge (e⁻/h⁺) separation (d) able to suppress e⁻ - h⁺ pair recombination, (e) stable against corrosion and photocorrosion in aqueous environment, and (f) simple and cost effective synthesis.

Oxide semiconductors are known to be highly stable against photo-corrosion and were extensively investigated as a photocatalysts. More than 140 metal oxides, Perovskites and oxynitrides have been reported for photochemical water-splitting reaction, however, majority of them are active under UV irradiation (which comprises of ~ 4 % of the solar spectrum) due to their large band gaps [25, 26]. Most of these oxides have either transition-metal cations with a d⁰ electronic configuration (e.g., Ti⁴⁺, Zr⁴⁺, Ta⁵⁺, Nb⁵⁺, W⁶⁺, and Mo⁶⁺) or typical metal cations with d¹⁰ electronic configuration (e.g., In³⁺, Ga³⁺, Ge⁴⁺, Sn⁴⁺, and Sb⁵⁺) as principal cation components. Nitrides and oxynitrides containing d⁰ transition-metal cations like Ta₃N₅, TaON, and LaTiO₂N are the other class of compounds that were found to be active [26]. The non-oxides semiconductors such as sulfides are generally unstable and get deactivated due to photocorrosion e.g, $CdS + 2h^+ \rightarrow Cd^{2+} + S$ and have to be used in presence of sodium sulfite and sodium sulfide sacrificial agents. Sacrificial agents that are either an electron donor such as methanol, S²⁻/SO₃²⁻ or an electron acceptor such as Ag⁺ have been widely used to promote formation of either H₂ or O₂, respectively.

There are two main approaches for achieving water splitting using visible light. One approach is to apply a twostep photoexcitation mechanism between two different photocatalysts (a two-step system; Fig. 4C) [27] and the other approach involves one-step photoexcitation system (Fig. 4B) where a conventional photocatalyst is modified to a visible-light responsive photocatalyst using different band engineering methods including introduction of a midgap electron donor level (doped materials), hybridization of the O 2p orbital with other orbitals (oxides, oxynitrides and oxysulfides), and the formation of solid solutions The first approach is inspired by natural photosynthesis in green plants and is also known as the Z-scheme. Here, the water splitting reaction is broken up into two stages: one for H₂ evolution and the other for O₂ evolution; these are combined by using a shuttle redox couple (Red/Ox) in the solution. Over a H₂ evolution photocatalyst, the photoexcited electrons reduce water to H₂ and holes in the valence band oxidize the reductant (Red) to an oxidant (Ox). The oxidant is reduced back to the reductant by photoexcited electrons generated over an O₂ evolution photocatalyst where the holes oxidize water to O2. This system thus lowers the energy required for photocatalysis,

Figure 5. Time dependent photocatalytic activity of $Pt/Cu_{0.02}Ti_{0.98}O_2$ for hydrogen generation under sun-light irradiation. Reaction conditions: 50 mg catalyst suspended in 15 ml of aqueous solution containing methanol (water : methanol :: 2:1)

allowing visible light to be utilized more efficiently than in conventional one step photoexcitation system. Z-scheme has another advantage of i.e., its ability to separate production of H_2 and O_2 by employing a separator, such as a porous glass filter, that permits only redox mediators to be transferred. Such separation of products in a conventional one-step water splitting system is not possible since H_2 and O_2 are evolved simultaneously on small semiconductor particles. Z-scheme systems however have a significant disadvantage that the two-step photoexcitation system requires the number of photons two-fold larger than the one-step system to achieve water splitting.

The search for visible-light responsive photocatalysts, especially during the last decade has brought quite a few promising systems, including Rh_{2-v}Cr_vO₃-loaded GaN:ZnO (a one-step water splitting system) and a twostep photoexcitation system consisting of Pt/ZrO₂/TaON and Pt/WO_3 with IO_3^2/I^2 shuttle redox mediators, where respective apparent quantum yields of about 5.1% has been observed upon illumination at 410 nm and 6.3% upon illumination at 420 nm, respectively [28,29]. Yan et al [30] demonstrated a very high value of apparent quantum yield (~93%) for H₂ generation using Pt-PdS/CdS photocatalyst under visible light irradiation ($\lambda > 400$ nm). Some of these results are included in Table 4. Recent results from Chemistry Division, BARC, on water splitting reaction using copper-doped titania (AQY = 5.8%) and ZrO₂-TiO₂-CdS nano-composite photocatalysts are presented in Figs. 5 and 6, respectively.

For more details on photocatalytic splitting of water some excellent reviews can be referred [30,31].

Figure 6. Time dependent photocatalytic activity of Pd/CdS, and Pd/ ZrO₂-TiO₂-CdS (Pd/ZTC) for hydrogen generation under fluorescent lamp (total 36 x 8 = 288 W), Reaction conditions: 50 mg catalyst suspended in 25 ml of aqueous solution containing Na_2SO_3 (0.8 M) and Na_2S (0.6 M) in 1:1 ratio by volume

Conditions					Ac	tivity	Reference
Photocatalyst	Co- catalyst	Sacrificial agent	lamp	Wave length (nm)	H ₂ (μ mol h ⁻¹ g ⁻¹)	App. Quantum vield* (%)	
CdS	Pt-PdS	S ²⁻ /SO ₃ ²⁻	300 W Xe	420	29,233	93	Yan etal, J.Catal. 266 (2009) 165.
NiS/CdS				420		51.3	Zhang et al, <i>Chem. Com.</i> 46 (2010) 7631.
CdS-Ti- MCM-41	RuO ₂	Ethanol	-	Visible	2730	36.3	Peng et al, <i>Chem. Com.</i> 49 (2013) 3221.
CdS-CdSe	Pt	Methanol	300 W Xe	450	40,000	20	Amirav et al, J. Phys. Chem. Lett. 1(2010) 1051
CuGa ₂ In ₃ S ₈	Rh	S ²⁻ /SO ₃ ²⁻	300 W Xe	560	-	15	Kaga et al, <i>Chem. Com.</i> 46 (2010) 3779.
LaTiO ₂ N	CoOx	-	-	440		27.1	Matoba et al, ChemEur. J. 17(2011) 14731.
Black TiO ₂	Pt	Methanol	Solar simulator with filter	>400 >660	100 10.000		Chen et al, Science, 331 (2011) 746.
ZrO ₂ -TaON and WO ₃	Pt	None	300 W Xe	420	150	6.3	Maeda et al, J. Am. Che. Soc., 132 (2010) 5858.
ZrO ₂ -TiO ₂ - CdS	Pd	S ²⁻ /SO ₃ ²⁻	288 W, Ordinary fluorescent lamp	Visible region with ~3% UV	2100	11.5	Sasikala et al, J. Colloid Interface Sci. 409 (2013) 135

 Table 4: Some of the recent results reported on photocatalytic generation of hydrogen

 from water using visible radiation

*- $AQY(\%) = (A \times R/I)$ 100 where A, R, and I represent coefficients based on the reactions (H₂ evolution -2; O₂ evolution -4), the H₂ or O₂ evolution rate, and the rate of incident photons, respectively

Material challenges for photocatalytic/ photoelectrochemical splitting of water

Achieving photocatalytic splitting of water under visible light (400nm < λ < 800 nm) with good efficiency, without using any sacrificial agents, still remains a challenge to use this process for large scale generation of hydrogen. Also the mechanism of water reduction and oxidation on the semiconductor surface including issues related to the charge transfer between semiconductors and co-catalysts, its dependence on the structural and electronic features of the interface, influence of surface impurities and preparation conditions needs more detailed investigations so as to improve the water splitting photocatalyst.

1.3.2 Hydrogen via photobiological splitting of water

Photobilogical splitting of water is also known as direct photolysis where hydrogen is produced from water using sunlight and specialized micro-organisms, such as green algae and cyanobacteria. Just as plants produce oxygen during photosynthesis, these micro-organisms consume water and produce hydrogen as a by-product of their natural metabolic processes. Currently, the microbes split water much too slowly to be used for efficient, commercial hydrogen production. However, efforts are on to modify the micro-organisms and to identify other naturally occurring microbes that can produce hydrogen at higher rates. Other bio-processes being developed for hydrogen generation include anerobic digestion, dark-fermentation of organic material and hybrid biohydrogen production using electrochemical processes [32-34]. Hydrogen can be produced from renewable biomass materials including organic-based starch industry waste, industrial waste biodiesel, lignocellulosic materials such as wood and its products, food, household waste and others. Some of these processes are discussed below:

• Biophotolysis of water using green algae and blue-green algae (cyanobacteria)

Green algae and blue-green algae split water molecules into hydrogen ion and oxygen via direct and indirect biophotolysis, respectively. In direct photolysis green algae produces hydrogen from water by following general reaction:

$$2H_2O + light energy \rightarrow 2H_2 + O_2$$
 (10)
The well-known H_2 -producing green algae, Chlamydomonas reinhardtii, under anaerobic conditions, can either generate H_2 or use H_2 as an electron donor. The generated hydrogen ions are converted into hydrogen gas in the medium with electrons (donated by reduced ferredoxin) by hydrogenase enzyme present in the cells. Light energy absorbed by photosystem II (PS II) generates electrons which are transferred to ferredoxin using light energy absorbed by photosystem I (PS I). A reversible hydrogenase accepts electrons directly from the reduced ferredoxin to generate H_2 in presence of hydrogenase, as follows:

$\begin{array}{l} H_2 O \rightarrow PS \ II \rightarrow PS \ I \rightarrow Ferredoxin \rightarrow Hydrogenase \rightarrow H_2 \\ \downarrow \\ O_2 \end{array}$

Hydrogen generation from water by indirect biophotolysis route involves several steps: (i) biomass production by photosynthesis, (ii) biomass concentration, (iii) dark aerobic fermentation produces 4 mol hydrogen/ glucose mol in the algal cells, together with 2 mol of acetate, and (iv) conversion of 2 mol of acetate in to hydrogen. This process can be classified in to two distinct groups, one of which is depending on the light and the other is light independent process.

$$\begin{aligned} & 6H_2O + 6CO_2 + \text{light} \to C_6H_{12}O_6 + 6O_2 & (12) \\ & C_6H_{12}O_6 + 2H_2O \to 4H_2 + 2CH_3COOH + 2CO_2 & (13) \\ & 2CH_3COOH + 4H_2O + \text{light} \to 8H_2 + 4CO_2 & (14) \\ & \text{Net reaction } 12H_2O + \text{light} \to 12H_2 + 6O_2 & (15) \end{aligned}$$

The advantage of biophotolysis is that, there is no need of adding substrate as nutrients. Water is the primary electron donor required for the production of hydrogen gas. Sunlight and CO_2 are the basic inputs needed to grow the cyanobacteria or microalga on biophotolysis process through the hydrogenase enzyme. Production of hydrogen gas by green algae and cyanobacteria is one of the methods that produce renewable energy without emission of GHG.

1.3.3 Bio hydrogen from Biomass

Biological hydrogen production from carbohydraterich biomass can be achieved through an anaerobic process known as dark fermentation and a photosynthesis process known as photo-fermentation.

• Dark fermentation

In dark fermentation process, glucose (representative of biomass) is initially converted to pyruvate by the glycolytic pathways. This is oxidized to acetyl-CoA, converted to acetyl phosphate and ultimately resulting in the generation of ATP and the excretion of acetate. Pyruvate oxidation to acetyl-CoA requires ferredoxin (Fd) reduction. Reduced Fd is oxidized by hydrogenase which generates Fd(ox) and releases electrons to produce molecular hydrogen. The overall process can be described as follows:

$$\begin{array}{l} Pyruvate + CoA + 2 Fd(ox) \rightarrow \\ acetyl-CoA + 2 Fd(red) + CO_2 \end{array}$$
(16)
$$2H^+ + Fd(red) \rightarrow H_2 + Fd(ox)$$
(17)

Anaerobic fermentation enables the mass production of hydrogen via relatively simple processes from a wide spectrum of potentially utilizable substrates, including refuse and waste products. Carbohydrates, mainly glucose, are the preferred carbon sources for fermentation processes, which largely produce hydrogen along with acetic/butyric acids, as follows:

$$\begin{split} & C_{_{6}}H_{_{12}}O_{_{6}}+2H_{_{2}}O\rightarrow 2CH_{_{3}}COOH+2CO_{_{2}}+4H_{_{2}}\ (18)\\ & C_{_{6}}H_{_{12}}O_{_{6}}\rightarrow CH_{_{3}}CH_{_{2}}CH_{_{2}}COOH+2CO_{_{2}}+2H_{_{2}}\ (19) \end{split}$$

• Use of fermentative and photosynthetic bacteria

In such system the anaerobic fermentation of carbohydrate/or organic wastes produces low molecular weight organic acids intermediates in the first step, which are converted into hydrogen by the photosynthetic bacteria in the second step in a photo-bioreactor. The two steps involved are as follows:

Dark fermentation:
$$C_6H_{12}O_6 + 2H_2O \rightarrow$$

2CH₃COOH + 2CO₂ + 4H₂ (20)

Photo-fermentation (photosynthetic bacteria): $2CH_3COOH + 4H_2O \rightarrow 8H_2 + 4CO_2$ (21)

Hydrogen production through dark-fermentation has advantages and more profitable than photo-fermentation processes because of its ability to continuously produce hydrogen and does not depend on energy provided by sunlight. However, by combining dark and photofermentation processes both generation of H₂ and treatment of organic waste can be achieved together. Das et al [34] reported successful operation of a hydrogen-biogas producing reactor (capacity 1.48 m³) for 200 days and achieved maximum hydrogen production rate of 5.57 m³ H₂/m³d using molasses as the substrate. H₂ in the product stream (mostly CO₂ and H₂) ranged from 40% to 52%.

• Use of bioelectrochemical assisted bio-reactor

Microbial fuel cell (MFC) produces protons and electrons due to the oxidation of organic matter by the bacteria. By electrochemically augmenting the cathode potential of MFC, hydrogen can be directly produced from the organic matter at a much lower voltage than that required for H_2 generation from water via electrolysis. In a typical MFC, the open circuit potential of the anode is ~300mV. The half reactions occurring at the anode and cathode, with acetate oxidized at the anode, are as follows:

Anode : $C_2H_4O_2 + 2H_2O \rightarrow 2CO_2 + 8e^- + 8H^+$ (22) Cathode : $8e^- + 8H^+ \rightarrow 4H_2$ (23)

Generation of hydrogen at the cathode will require a potential of at least $E^0 = -410$ mV at pH 7.0. Thus, hydrogen can theoretically be produced at the cathode by applying a circuit voltage greater than 110mV (i.e., 410–300mV). This voltage is substantially lower than that required for hydrogen derived from the electrolysis of water, which is theoretically 1230mV at neutral pH. Such bio-electrochemically assisted microbial systems, in combination with hydrogen fermentation process (producing 2 to 3 mol of H₂/mol glucose) have the potential to produce 8 to 9 mol H₂/mol glucose at an energy cost equivalent to 1.2mol H₂/mol glucose [33].

Each of the biohydrogen production processes stated above has its own advantages and disadvantages. The best approach to maximize the production of hydrogen gas is to combine them.

Material challenges to Biophotolytic H, production

Green algal H_2 has the potential to be a sustainable fuel of the future, but has to overcome several challenges such as low photochemical efficiency of biophotolysis, scalability and affordability of the process. There is also a need to identify microbes that can utilize hemicellulose and cellulose directly. Efficient and scalable designs will be required for the successful applications of the microbial electrolysis process.

Conclusion

Most of the hydrogen production techniques from non-fossil fuels such as biomass gasification or pyrolysis, biological, photo catalytic, thermo-chemical methods using nuclear and solar energy etc. are in early stage of development. These technologies need to be developed further and demonstrated so that they become technically viable, reliable, and cost competitive with conventional fuels.

Acknowledgements:

Authors gratefully acknowledge contributions of their sectional colleagues associated with the research on hydrogen generation via S-I thermochemical cycle and photocatalytic splitting of water. Fruitful discussions with Dr. R. Sasikala on photocatalytic splitting of water are gratefully acknowledged. Sincere thanks are also due to Dr. V.K. Jain, Head, Chemistry Division, Dr. D. Das, Ex-Head, Chemistry Division, and Dr. B.N. Jagatap, Director, Chemistry Group, BARC for their keen interest and support to this work.

References

- 1. I. Dincer, Int. J. Hydrogen Energy, 37 (2012) 1954.
- J. Turner, G. Sverdrup, M. K. Mann, P. C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans and D. Blake, *Int. J. Energy Res.*, 32 (2008) 379.
- J.D. Holladay, J. Hu, D.L. King, and Y. Wang, Catal. Today, 139 (2009) 244.
- F. M. Langer, E. Tzimas, M. Kaltschmitt, and S. Peteves, *Int. J. Hydrogen Energy*, 32 (2007) 3797.
- 5. C.S. Song, Catal. Today, 77 (2002) 17.
- M.N. Manage, D. Hodgson, N. Milligan, S.J.R. Simons, and D.J.L. Brett, *Int. J. Hydrogen Energy*, 36 (2011) 5782.
- B. Vega and A.R. Kovscek, Developments and Innovation in Carbon Dioxide (CO₂) Capture and Storage Technology, 2010, Pages 104.
- T.V Choudhary and D.W Goodman, *Catal. Today*, 77 (2002) 65; Q. Zhang, L. Shore, R. J. Farrauto, *Int. J. Hydrogen Energy*, 37 (2012) 10874.
- Z. Shi, S. Wu, J. A. Szpunar, and M. Roshd, J. Membr. Sci. 280 (2006) 705.
- Y. Inaba, H. Ohashi, T. Nishihara, H. Sato, Y. Inagaki, T. Takeda, K. Hayashi, S. Takada, Nuclear Engineering and Design, 235 (2005), 111.
- 11. D. Wang, S. Czernik, D. Montane, M. Mann, E. Chornet, *Ind. Eng. Chem. Res.* 36 (1997) 1507.
- 12. N.H. Florin and A.T. Harris, Chem. Eng. Sci. 63 (2008)287.
- 13. J. Funk, and R. Reinstrom, Energy requirements in the production of hydrogen from water, *Ind. Eng. Chem. Proc. Des. Dev.*, 5 (1966) 336.
- 14. T. Kodama and N. Gokon, Chem. Rev. 107 (2007): 4048
- K. Wegner, H.C. Ly, R.J. Weiss, S.E. Pratsinis, A. Steinfeld, Int. J. Hydrogen Energy, 31 (2006) 55.
- 16. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, and K. Onuki, *Nucl. Eng. Des.* 233 (2004) 347.
- R. Elder and R. Allen, *Prog. Nucl. Energy*, 51 (2009) 500;
 W.A. Summers, J. Steimke, T. Steeper, D. Hobbs, H. Colen-Mercado, D. Herman, M. Elvington, M. Gorensek, 2009.
 II.G.3 Hybrid sulfur thermochemical process development. DOE Hydrogen, Program FY 2009 Annual Progress Report p. 165.
- G.F. Naterer, S. Suppiah, L. Stolberg, M. Lewis, Z. Wang, V. Daggupati, K. Gabriel, I. Dincer, M.A. Rosen, P. Spekkens, S.N. Lvov, M. Fowler, P. Tremaine, J. Mostaghimi, E.B. Easton, L. Trevani, G. Rizvi, B.M. Ikeda, M.H. Kaye, L. Lu, I. Pioro, W.R. Smith, E. Secnik, J. Jiangi, J. Avsec, *Int. J. Hydrogen Energy*, 35 (2010) 10905.
- 19. Chemical Technology Division presented a poster on thermochemical hydrogen production during National technology day on May 12 2014 at BARC, Mumbai.
- A.M. Banerjee, A.R. Shirole, M. R. Pai, A. K. Tripathi, S.R. Bharadwaj, D. Das, and P.K. Sinha, *App. Cat. B: Environmental* 127 (2012) 36.

- D. Tyagi, K. Scholz, S. Varma, K. Bhattacharya, S. Mali, P.S. Patil, S.R. Bharadwaj, *Int. J. Hydrogen Energy*, 37 (2012) 3602.
- X. Zhang, J.E. O'Brien, R.C. O'Brien, J.J. Hartvigsen, G. Tao, G.K. Housley, *Int. J. Hydrogen Energy*, 38 (2014) 20.
- 23. Q. Li, Y. Zheng, W. Guan, L. Jin, C. Xu, W.G. Wang, Int. J. Hydrogen Energy, 39 (2014) 10833.
- 24. S.P.S. Badwal, S. Giddey and C. Munnings, *WIREs Energy Environ.*, 2(2013) 473; doi: 10.1002/wene.50 and references therein.
- 25. K. Maeda, J. Photochem. Photobiol. C: Photochem. Rev. 12(2011) 237.
- 26. M. Higashi, R. Abe, T. Takata, and K. Domen, *Chem. Mater.*, 21 (2009) 1543.

- 27. K. Maeda and K. Domen, J. Phys. Chem. Lett. 1 (2010) 2655.
- 28. Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. *Nature* 440 (2006) 295.
- 29. H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi and C. Li, *J. Catal.*, 266 (2009) 165
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.M. Elizabeth, A. Santori, and N.S. Lewis, *Chem. Rev.* 110 (2010) 6446.
- A. Ismail and D. Bahnemann, Solar Energy Materials & SolarCells128 (2014) 85.
- 32. Y. Kalinci , A. Hepbasli and I. Dincer, *Int. J. Hydrogen Energy*, 34 (2009) 8799.
- M.Y. Azwar, M.A. Hussain, A.K.Abdul-Wahab, Renewable and Sustainable Energy Reviews, 31(2014) 158.
- 34. D. Das and T. N. Veziroglu, Int. J. Hydrogen Energy, 36 (2008) 3046.

Materials of Construction for Iodine – Sulfur Thermochemical Process

H. Z. Fani*, S. Sujeesh, V. Nafees Ahmed, A. Shriniwas Rao, A. Sanyal

Chemical Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai -400085, India *E-mail: hunaidf@barc.gov.in

Abstract

The Iodine – Sulfur thermochemical process consists of three chemical reactions that together split of water into hydrogen and oxygen. This process involves corrosive chemicals such as hydrogen iodide, iodine and sulfuric acid. The environments of hydrogen iodide and iodine are extremely corrosive and the temperature ranges upto around 500 °C. Concentrated sulfuric acid (98 wt%) also requires to be handled upto 900 °C. This paper gives comprehensive summary of the materials of construction used in the plant operation of iodine – sulfur process. Tantalum, glass lined, PFA lined and quartz materials were used in the plant operation in the field and are found to be suitable for the demonstration of Iodine – Sulfur process at laboratory and pilot plant scale. The shortlisted materials from literature and their corrosion rate at the test conditions are also reported in this paper.

Introduction

The Iodine sulfur thermo-chemical process splits water to produce hydrogen using chemical energy and heat. This process involves three main reactions, ie. Bunsen reaction, hydrogen iodide decomposition reaction and sulfuric acid decomposition reaction.

i) Bunsen Reaction

In this reaction, sulfur dioxide, iodine and water are reacted to form the products sulfuric acid and hydriodic acid

 $SO_2(g) + I_2(l) + 2H_2O(l) \rightarrow H_2SO_4(aq) + 2HI(aq)$

This is an exothermic reaction that is carried out at around 60 °C to 120 °C temperature. In the presence of excess iodine, the product acids form two distinct phases, i.e. sulfuric acid phase (lighter phase) containing sulfuric acid and water and HIx phase (heavier phase) containing hydriodic acid, iodine and water. These two acids formed as the product phases are purified and decomposed.

ii) Sulfuric acid decomposition

The sulfuric acid decomposition involves two endothermic reactions; in the first reaction sulfuric acid is decomposed to form Sulfur trioxide and water. This occurs at around 400 °C.

 $H_2SO_4(aq) \rightarrow SO_3(g) + H_2O(g)$

In the second reaction, SO_{3} is decomposed to form SO_{2} and oxygen at 900°C

 $SO_3(g) \rightarrow SO_2(g) + 0.5O_2(g)$

iii) Hydrogen iodide decomposition

In this endothermic reaction, hydrogen iodide is decomposed at around 450 $^{\circ}$ C to form hydrogen and iodine.

2HI (aq) \rightarrow H₂ (g) + I₂ (g)

These three reactions together constitute splitting of water into hydrogen and oxygen as products.

 $H_2O \rightarrow H_2 + 0.5 O_2$

The block diagram of Iodine – Sulfur thermo-chemical process is as shown in Fig. 1. The complete closed loop process can be divided into three sections.

- I) Bunsen Section
- II) Sulfuric acid section
- III) HIx section

Figure 1: Block Diagram of IS process

 Bunsen Section: This section includes Bunsen reactor with liquid – liquid phase separator, sulfuric acid purifier and HIx purifier. In the Bunsen reactor, sulfur dioxide, water and iodine are reacted to form sulfuric acid and hydroiodic acid as products.

- II) Sulfuric acid section: This section includes sulfuric acid concentrator (distillation column with condenser and reboiler), sulfuric acid decomposer, SO₃ decomposer and sulfuric acid product separator (gas – liquid condenser). In this section, sulfuric acid is concentrated, that is excess water is removed then it is decomposed to form SO₃ and water. The SO₃ formed is further decomposed to form SO₂ and oxygen.
- III) Hydriodic acid section: This section includes HIx distillation column with reboiler and condenser, HI vaporizer (reboiler), HI decomposer, HI reflux condenser and HI concentrator column with reboiler. In this section, iodine is removed as bottom product from HI_x distillation column. The top product containing hydrogen iodide and water is sent to HI decomposer to form hydrogen and iodine.

Thus as an overall process, water is split into hydrogen and oxygen. All the other compounds formed are recycled back in the process. This process has advantages over other thermochemical water splitting processes; this involves relatively small number of chemical reactions, has good thermal efficiency and is a completely fluid process (gaseous and liquid phases). But, Iodine - Sulfur thermochemical process involves corrosive chemicals such as sulfuric acid, hydriodic acid, iodine, sulfur dioxide and sulfur trioxide. These chemicals may be present together such as hydrogen iodide, sulfuric acid and sulfur dioxide in Bunsen reactor, sulfuric acid purifiers, hydriodic acid purifiers or individual chemicals such as sulfuric acid, sulfur dioxide and sulfur trioxide may be present in various equipments such as sulfuric acid concentrator, sulfuric acid and SO₃ decomposers or in sulfuric acid reboilers and condensers. Similarly hydrogen iodide and iodine is present in hydrogen iodide distillation column with condenser and reboiler, hydrogen iodide decomposer and hydrogen iodide reflux column. The temperature in Iodine-Sulfur thermochemical process ranges from room temperature to as high as 900 °C. The reaction environment created by HI and iodine is extremely corrosive and the temperature is upto 500 °C. The appropriate materials of construction are required to handle concentrated sulfuric acid as well as sulfuric acid vapors to a maximum temperature of 900 °C. Candidate materials have to be screened from the viewpoint of corrosion resistance for continuous and long term usage.

Glass closed loop process for Hydrogen production

At BARC, Mumbai, the glass closed loop IS process for hydrogen production has been successfully demonstrated for continuous hydrogen production for about 20 hrs at the rate of 30 Nlph. The figures 2, 3 and 4 represent Bunsen reactor and liquid-liquid separator, sulfuric acid decomposer and SO_3 decomposer, HIx distillation column and HI decomposer respectively. The materials of construction used were borosilicate glass for equipments operating below 250 °C and Quartz (fused silica glass) was used for equipments operating above 250 °C. The valves

Figure 2: Bunsen Reactor of glass system and liquid liquid separator

*Figure 3: Sulfuric acid decomposer (left) and SO*₃ *decomposer (right) during operation.*

Figure 4: HIx distillation (left) and Hydrogen Iodide decomposer (right) during operation.

SMC Bulletin Vol. 5 (No. 2) August 2014

were made of glass and used in zones of temperature below 250 °C. All connecting lines were made of flexible PTFE tubes.

Bunsen Metallic Plant of Iodine – Sulfur process

Metallic Bunsen plant, involves Bunsen section of Iodine – Sulfur process that can be operated at pressures upto 8 bar and temperatures ranging from room temperature upto 150 °C. The Bunen reaction is carried in this plant. The feed chemicals such as process water, iodine, sulfuric acid and hydriodic acid are sent from the feed tanks.

Sulfur dioxide gas is sent from gas cylinder. These chemicals are sent in Bunsen reactor, where Bunsen reaction is carried out and then the products are sent to liquid – liquid separator. In the liquid - liquid separator the two product acid phases are separated and collected in product tanks. The Bunsen and liquid liquid separator for the metallic plant are as shown in Fig. 5.

Figure 5: Bunsen reactor and liquid liquid separator (metallic system)

Materials of Construction for Bunsen Section:-

Bunsen section of Iodine – sulfur process involves chemicals that are hydriodic acid, iodine, sulfuric acid, sulfur dioxide and water.

The materials of construction used in the metallic Bunsen section are as follows. All the pipelines were PTFE lined (internally) on mild steel. All the feed and product tanks were glass lined from inside on mild steel. The reactor was made of Tantalum tube inside Stainless steel pipe. Pressure is measured with remote seal assembly of tantalum diaphragm. Level is measured using guided wave (PTFE tube) Radar level transmitters and differential pressure transmitters.

The Materials of constructions for flow transmitters are as following:

- i. DM water Coriolis Mass flowmeter of SS 316
- ii. Iodine Electromagnetic mass flowmeter Tantalum Electrode and PFA lined
- iii. Sulfur dioxide Coriolis mass flowmeter of SS 316
- iv. Sulfuric acid Coriolis mass flowmeter Hastelloy C 376
- v. Hydriodic acid Electromagnetic mass flowmeter -

Tantalum electrode and PFA lined

vi. Oxygen - Coriolis mass flowmeter - SS 316

Materials of Construction for Sulfuric acid Section

Sulfuric acid section includes sulfuric acid concentrator, sulfuric acid vaporizer, sulfuric acid decomposer, SO_3 decomposer that forms SO_2 and oxygen. The products from the SO_3 decomposer are sent into the condenser to separate SO_2 and O_2 from unreacted sulfuric acid and water. The temperature in this section range from 150 °C to as high as 900 °C. The choice of gaskets is also crucial while finalizing the materials of construction.

In the glass closed loop process for hydrogen production, the equipments such as SO₃ decomposer, sulfuric acid decomposer, and sulfuric concentrator (reboiler and column) were made of quartz to sustain the high temperatures. Other equipments, such as condensers are made of borosilicate glass for low temperature operation.

Chemical Technology Division is involved in designing and fabrication of integrated sulfuric acid concentrator and decomposer operating at around 20 bar (g) and temperatures upto 900 °C. The equipment consists of a stainless steel vessel where hot helium gas is used for heating. The dilute sulfuric acid enters from top of the vessel in the tubes. Then sulfuric acid is concentrated with hot outflow of gases and decomposition occurs inside bayonet tubes made of Silicon Carbide. The shell containing sulfuric acid feed and product is of Incoloy 800 H. The gaskets used are corrosion resistant Incoloy 800 H spring energized metal gaskets.

The suggested materials of construction for sulfuric acid section as per Japan Atomic Energy Research Institute[1] are Tantalum and Zirconia for high temperature and concentrated sulfuric acid environments from equipments ranging from sulfuric acid concentrator to decomposer and temperatures ranging from 150 °C to 900 °C.

R. H. Jones and G. J. Thomas [2] suggested materials of construction for concentrated sulfuric acid at high temperatures, Silicon carbide showed excellent corrosion resistance with corrosion rate of around 0.002 g/m²-h, Si₃N₄ showed corrosion rate of around 0.007 g/m²-h, Fe-20 Si showed corrosion rate of around 0.13 g/m²-h in 95 % wt concentrated sulfuric acid solution at 460 °C. Tantalum showed excellent corrosion resistance with corrosion rate in the range of 0.04 mm/yr in 98 % wt sulfuric acid solution upto 200 °C. Incoloy 800 H has shown best performance with a corrosion rate of less than 0.1 mm/yr at 900 °C.

S. Kubo et. al. [3,4] suggested that, Incoloy 825, Incoloy 800 and Hastelloy C 276 showed minimum corrosion rate in gaseous sulfuric acid environments upto temperature of 900 °C. The corrosion rate of Incoloy 825 was around 3.5

mm/yr, Incoloy 800 was around 6.1 mm/yr and Hastelloy C 276 was around 6.1 mm/yr at 900 °C. JIS SUS329J1 and Inconel 625 also showed good corrosion resistance in this environment. The corrosion rate of JIS SUS329J1 was 8.8 mm/yr and Inconel 625 was 7.0 mm/yr at 900 °C. The corrosion rates of JIS SUS304 and JIS SUS310S were 8.8 mm/yr and 7.9 mm/yr respectively.

For bubbling sulfuric acid upto 98 wt %, high Si cast iron (15 wt % Si) showed minimum corrosion with corrosion rate of 0.1 mm/yr, followed by Tantalum with a corrosion rate of 27 mm/yr and Hastelloy B2 with a corrosion rate of 63 mm/yr. For pressurized sulfuric acid near bubbling temperatures at 2 MPa (g) Silicon Carbide (SiC) showed corrosion rate of 0.05 g/m²-day, Si-SiC (SiC 80 wt % and Si 20 wt %) showed corrosion rate of 0.1 g/m²-day, Si₃N₄ showed corrosion rate of 0.2 g/m²-day.

Materials of Construction for Hydrogen Iodide Section

Hydriodic acid section includes HIx distillation, hydriodic acid vaporizer, hydriodic acid decomposer, to form hydrogen and Iodine. The products from the hydriodic acid decomposer are sent into the condenser to separate hydrogen and Iodine from unreacted hydriodic acid, water and iodine. The temperature in this section ranges from 150 °C to as high as 500 °C. The choice of gaskets is also crucial while finalizing the materials of construction.

In the glass closed loop process for hydrogen production, the equipments such as hydriodic acid decomposer, and hydriodic acid distillation (reboiler and column) were made of quartz to sustain the high temperatures. Other equipments, such as condensers were made of borosilicate glass for low temperature operation.

Chemical Technology Division is also involved in designing and fabrication of equipments of HI section for the metallic plant, such as HIx distillation column with condenser and reboiler, HI vaporizer, HI decomposer and condenser after the decomposer to separate hydrogen gas from iodine and unreacted reactants such as hydrogen iodide (with water). The HIx distillation column would be tantalum lined with spring energized metal gaskets, HI decomposer will also be tantalum lined on stainless steel. The reboilers would be tantalum lined from inside and the heating coils would be made of tantalum. Similarly in the condensers, those are shell and tube condensers with process fluid in tube side and utility (process water) in shell side. The tubes would be made of tantalum and shell would be tantalum lined. All the process piping above 150°C would be tantalum lined and piping below 150°C would be glass lined.

Japan Atomic Energy Research Institute [1] reported that, Tantalum and Silicon Carbide showed excellent corrosion resistance in boiling HI environment upto a temperature of 300 °C and pressure of 2.0 MPa. Whereas corrosion rate for Zirconium is around 3.5 mm/yr at 300 °C and pressure of 2.0 MPa and for Niobium, the corrosion rate was around 1.1 mm/yr at 240 °C and pressure of 2.0 MPa. For gaseous HI decomposer environments upto 400 °C, tantalum, titanium, zirconium and Si₃N₄ showed excellent corrosion resistance. Silicon Carbide (SiC) showed corrosion rate of around 1 mm/yr in gaseous HI environment.

R. H. Jones and G. J. Thomas [2] suggested, materials of construction for HI (30 % wt) in temperature range of atmospheric to 500 °C that molybdenum and tantalum showed excellent corrosion resistance. Silicon Carbide (SiC) based materials both sintered and chemical vapor deposition (CVD) SiC have shown very low corrosion rates when tested in HIx upto 300 °C. Tantalum -2.5 tungsten alloy also showed good corrosion resistance upto temperature of around 300 °C.

S. Kubo and H. Sato [3] suggested that, tantalum, niobium, zirconium and silicon carbide showed excellent corrosion resistance in boiling HIx atmospheres upto pressures of 20 bar and temperatures upto 300 °C. For gaseous hydriodic acid atmospheres upto 400 °C, ceramics Si_3N_4 and SiC showed excellent corrosion resistance. Among metals tantalum, zirconium and titanium showed excellent corrosion resistance.

Conclusions:

A detailed review of materials of construction of components for iodine-sulfur thermochemical process has been given in this paper. From the review, it can be concluded that the materials of construction for metallic Iodine – Sulfur process system for hydrogen production are; glass lined and tantalum etc for Bunsen section, SiC, SiC lined, incoloy 800 etc for sulfuric acid section and tantalum lined for HIx section. However, the finalized materials of construction need to be evaluated based on cost, fabricability, availability of gaskets and actual plant operating conditions including thermal cycling and high pressures. This will help in commercialization of iodine – sulfur process.

References:

- 1. Onuki K, Nakajima H, Ioka I, Futakawa M, Shmizu S, Japan Atomic Energy Research Institute, Review-94-006, 1994.
- 2. Materials for the Hydrogen Economy, eds Jones R. H, Thomas G. J, CRC Press 2007
- Nuclear Hydrogen Production Handbook eds Yan X. L., Hino R, CRC Press 2011
- Kubo S, Futakawa M, Ioka I, Onuki K, Yamaguchi A, International journal of Hydrogen Energy, 38 (2013) pp 6577 -6585.

SMC Bulletin Vol. 5 (No. 2) August 2014

	Mr. Hunaid Fani has completed M. Tech in Chemical Engineering from Indian Institute of Technology Bombay in year 2003. After successful completion of OCEP-2003 training program, he has joined as scientific Officer in Chemical Technology Division of BARC. He is involved in process equipment design, process simulation, project engineering and experimental work of Hydriodic acid section.
G	Mr. Sujeesh S has completed B. Tech in Chemical Engineering from Kerala University in year 2010. After successful completion of OCES -2010 training program, he has joined as scientific officer in Chemical Technology Division of BARC. He is involved in process equipment design, project engineering and experimental work of sulfuric acid section & integrated sulfuric acid decomposer.
Q	Mr. Nafees Ahmed is M. Tech in Chemical Engineering from Homi Bhabha National Institute in year 2010. After successful completion of OCES -2006 training program, he has joined as Scientific Officer Chemical Technology Division of BARC. He is involved in process equipment design, process simulation, project engineering and experimental work of Bunsen section.
Co	Mr. Shriniwas Rao as Head, Materials Development Section, Chemical Technology Division is overall in-charge of the demonstration of I-S thermochemical process for hydrogen production. He has successfully led the team and demonstrated closed loop IS process in glass system
	Mr. Ashis Sanyal as Head, Chemical Technology Division is guiding hydrogen program on storage and production by I-S thermochemical process.

Application of Membrane Technology in IS Thermochemical Cycle

Nitesh Goswami*, A. K. Singha, Soumitra Kar, R.C. Bindal, P.K. Tewari

Desalination Division, Bhabha Atomic Research Centre, Trombay, Mumbai, INDIA-400085 *Corresponding author: niteshg@barc.gov.in Telephone: +91 22 25594646 Fax: +91 22 25505151

Abstract

One of the most promising routes currently under development for sustainable hydrogen production is the Iodine Sulphur (IS) thermochemical water splitting cycle. The most important stage in determining overall process efficiency and feasibility of the cycle is the separation of HI_x , a mixture of HI, H_2O and I_2 and decomposition of HI. A major improvement in overall efficiency of the IS cycle can be achieved by optimizing the HI decomposition step. This paper highlights the drawbacks persisting in the HI_x processing stage of the IS cycle and investigates the scope for applying membrane separations to HI decomposition section, with the aim of improving the overall efficiency of the process. Work carried out in this research centre towards development and application of EED (Electro-electro dialysis) and membrane reactor for HI decomposition studies has also been discussed.

Key words: Hydrogen, thermochemical cycle, Membrane reactor, Electrodialysis

1. Introduction

1.1 IS thermochemical cycle

Research and development is constantly underway to create the next generation energy technology, since energy needs will continue to increase. Future energy sources must also be environment friendly and economical. With these factors in mind, many believe that hydrogen is poised to be the next big revolution in the energy market. Hydrogen is one of the clean energy media without carbon dioxide emission. Among the methods of hydrogen production, steam reforming and water electrolysis are proven and used extensively for the production of hydrogen today. On the other hand, thermochemical cycles are of particular interest because unlike contemporary methods, it produces hydrogen efficiently with no carbon dioxide as by-product and it does not depend on depleting fossil fuels, while having a potential advantage in terms of sustainable hydrogen production.

Among the large scale, cost effective and environment friendly thermochemical processes, iodine-sulphur (IS) thermochemical cycle is a quite promising one. The IS thermochemical process is one of the promising processes of hydrogen production amongst all the alternatives available keeping in view the predicted thermo-chemical efficiency and its ability to couple it to a high temperature nuclear reactor [1-6]. An upper bound and a best estimate of the efficiency of a thermochemical IS water splitting cycle coupled with a high temperature nuclear reactor operating between 760 K and 1144 K has been proposed by Goldstein et al [4], where an upper bound of 51% was found assuming ideal reversible chemical reactions and constraints related to the heat exchange between helium and chemical process. The IS process consists of the following reactions:

$$9I_2 + SO_2 + 16H_2O \rightarrow (H_2SO_4 + 4H_2O) + \\ Lighter phase$$

 $(2HI + 10H_2O + 8I_2)$ (Bunsen reaction) (1) Heavier phase (HIx)

$$\begin{aligned} &H_2 SO_4 \to H_2 O + SO_2 + 0.5O_2 & (2) \\ &2HI \to H_2 + I_2 & (3) \end{aligned}$$

In IS cycle, sulfuric acid cannot be separated from hydrogen iodide, by thermal means, without reversing the equilibria. This separation is readily accomplished in the presence of a large excess of iodine, with the formation of two immiscible liquid phases, a light H_2SO_4/H_2O phase and a heavy $HI_x(HI/I_2/H_2O)$ phase, which essentially poses tremendous difficulty in the successive processing of HI_y stream.

In Section3 of the cycle, the HI phase can be first concentrated by distillation and the HI_x distillate at azeotropic composition (13% molar in HI) is decomposed in the vapor phase according to the third reaction. HI decomposition can be accomplished by either reactive or extractive distillation. Reactive distillation is a simple one step process. HI_x solution boils at temperatures approaching 300° C. Operating pressure is under these conditions are in the range of 20-50 bars. On the other hand, in the process of extractive distillation, iodine separation from HI_x is made effective at 120 °C using H₃PO₄ followed by distillation of HI_x and subsequent concentration of H₃PO₄. HI_x solution is extremely corrosive. Glass can be chosen as a suitable material for handling the corrosive properties of the solution, but this requires intricate and special measures

SMC Bulletin Vol. 5 (No. 2) August 2014

to operate at these high pressures. On the other hand, extractive distillation suffers from a serious drawback of addition another chemical species and making the IS cycle more complex to process further. Another challenge involved is that the equilibrium conversion of HI is only around 23% at 450 °C. Low decomposition ratio leads to the increase of the amount of recycle materials (HI, I, H₂O) and therefore decreases the thermal efficiency. Against a singlestep reactive distillation, a combination of membrane based technologies, i.e., electro-electro dialysis (EED) employing proton exchange membrane and membrane reactors (employing inorganic/metallic membranes) together have got immense potential to overcome criticalities (w.r.t. high temperature, high pressure, highly corrosive environment) associated with HI decomposition steps as mentioned above, and help in realizing the overall predicted efficiency of the IS cycle. The present paper intends to highlight the importance of membrane based technologies in the IS cycle as well as the associated challenges. The work carried out in this research centre is also summarized.

2. Role of membranes in HI concentration

The product from first step of IS thermochemical cycle (that is the Bunsen Section) consists of HI_v solution which contains excess amount of iodine, water and only 13 molar % of HI. This causes a thermal burden on the subsequent stages of HI decomposition. A significant amount of energy is consumed in the concentration of HI_v solution coming out of Bunsen reactor. The HI, from the Bunsen reaction stage is a pseudo-azeotropic mixture thereby increasing the heat requirement substantially to affect the concentration process [7, 8]. In order to improve the concentration of the HI phase after the Bunsen reaction, the General Atomic proposed the use of phosphoric acid (H_2PO_4) for the concentration of the HI solution [9]. A vapour with a 99.7% molar in HI was obtained. But, the remaining H₂PO₄ solution was concentrated by using large amounts of heat and electricity. In contrary to that, an EED concentration method was proposed by Arifal et al. and Onuki et al. [10, 11]. The EED process for concentration of HI, suggested by Onuki et al.[11] was found effective in concentrating the HI for the HI decomposition step. The energy consumption has been found to be lower than the other alternatives like extractive and reactive distillation. EED was also carried out for the HI concentration from HI, solution to improve the HI decomposition reaction in the IS process [12]. The EED experimental setup consisted of reservoirs with glass tubes formed by double jacket to control the temperature in the anolyte and catholyte. A peristaltic pump was used to control the flow rate of the HI₂ solution. To avoid a pressure increase in the glass reservoirs and also to

minimize the dissipation of HI vapor, the condensers were equipped in reservoirs. Thermocouples were fitted in the cell, reservoirs, and glass tube lines that were located in the cell inlet to maintain the temperature. Fig.1 illustrates the EED setup. The half-cell was composed of a carbon plate, gasket, electrode, and cation exchange membrane. An activated carbon cloth was used as the electrode, and a commercial cation exchange membrane (Nafion 117) was employed in a cell. In the EED, the electrode reaction was the following redox reaction of iodine to iodide ions at the cathode:

The iodide ions react with H+ ions in the catholyte and hence, the HI mole fraction of the catholyte increases while that of the anolyte decreases.

Work carried out in Desalination Division, BARC, for HI concentration studies using EED has been discussed in subsequent sections.

Figure 1: Schematic EED setup (Adapted from Ref. 12)

3. Role of membranes in HI decomposition

HI decomposition and *in situ* hydrogen separation can be made effective by employing a membrane reactor (MR), which is a unit that combines reaction and separation, i.e., it is a reactor which separates one or more components from the reaction mixture *in situ* as the reaction proceeds. Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available. The most important area is hence, the development of suitable gas-permeable membranes and membrane reactors compatible with the process environment for enhancement of the equilibrium decomposition conversion of HI, which is the most intricate step as far as the overall process efficiency is concerned. There are two main advantages in particular offered by MRs: if the membrane is very selective with regard to a specific product, then it is possible to obtain a very pure compound in the same equipment that is used to produce it; furthermore, in the case of reversible reactions, removing one or more reaction products, as they are generated, allows conversions higher than equilibrium values. Another important advantage is it establishes a synergy between separation and reaction. The continuous separation of one or more of the products (e.g., hydrogen in this case) is reflected by an increase in yield and/or selectivity.

Studies have been carried out regarding the application of MRs in several processes involving hydrogen production, particularly the ones using fossil fuels (steam methane reforming and water gas shift reactions). However, the application of MRs in the area of HI decomposition is far from being matured and detailed experimental and modeling studies need to be carried out in this direction. Equilibrium conversion of HI is around 23% at 450 °C without hydrogen removal. Kar et al. [13] cited that the low decomposition ratio leads to the increase of the amount of recycle materials (HI, I2, H2O) and therefore decreases the thermal efficiency. In order to overcome the low efficiency due to the poor equilibrium decomposition of HI, ongoing research is dedicated toward development of a hydrogenpermselective membrane reactor. Silica membranes prepared by chemical vapor deposition were applied to the decomposition reaction of HI by Nomura et al [14] in order to improve one-pass conversion of HI. Norman et al. [15] estimated the thermal efficiency of the IS process to produce H₂ from water to be 47%. Membrane techniques aimed for the application in HI decomposition procedure were investigated and a continuous and stable operation of the bench-scale apparatus was successfully carried out by Kasahara et al [16] for all sections of the IS process. Flow sheet study was carried out on the application of membranes for HI processing by the research group and an upper bound thermal efficiency was estimated to be 57%. However, thermal efficiency based on more realistic parameters from experimental results was found out to be only 34%. A preliminary flowsheet of an electrodialysis cell and MR embedded IS cycle was developed by Shin et al [17]. Catalytic decomposition of hydrogen iodide in a membrane reactor was investigated theoretically [18] for the application to the hydrogen production step in the thermochemical IS process. It was found from the study that more than 90% conversion can be attained using the membrane reactor with the homemade silica membrane in a single pass.

4. Work carried out in BARC

Desalination Division, BARC is engaged in the development of membranes and membrane based devices for HI concentration as well as HI decomposition. HI is concentrated from a pseudo-azeotropic HIx solution using EED followed by the decomposition of HI using a MR. It is believed that EED coupled with membrane reactor can be a suitable alternative against the reactive distillation column, keeping in view several issues cited above. The work carried out is summarized in subsequent sections.

4.1 Studies on HI concentration using EED

To design and fabricate a leak-proof and corrosion resistant EED cell is a challenge. The EED cell was fabricated which comprises of glass-filled PTFE support plate, expanded PTFE gasket, Pt electrode and proton exchange membrane as shown in Fig. 2. Experiments were conducted with HI, (HI, iodine and water mixture) solution at temperatures up to 100 °C. The catholyte and anolyte flow rate was maintained at 150 mL/minute for a membrane area of 100 sq. cm. At a voltage of 0.3 V, the HI solution (40 wt % HI, 3 % iodine and rest water) was concentrated at catholyte by about 7 % w.r.t. HI and depleted by about 8 % w.r.t. iodine. The detailed parametric studies with variation of HI composition, catholyte/anolyte flow rate, electrode material, temperature of HI solution etc. are underway. Fig. 3 shows the actual experimental EED setup as installed in Desalination Division.

Figure 2: Components of EED cell (Adapted from Ref. 12)

Figure 3: Experimental setup for EED for HI concentration studies

4.2 Membrane reactor development and HI decomposition studies

MR development includes two important challenges: first, the development of hydrogen permselective defect free membrane; second, the design and fabrication of a MR which should accommodate the membrane in a leak proof arrangement with provisions for feed, product, reject lines as well as catalyst port. An attempt has been made to develop silica membrane [19] on alumina support with graded porosity using sol-gel processing. The process was carried out using dip-coating technique on a highly porous alumina fiberboard support. A detailed study on the surface morphology and cross-sections of monoliths and membranes were studied by scanning electron microscope (Fig 4).

Figure 4: Cross-section of alumina-supported silica membrane

The efforts subsequently were oriented towards development of bench scale tubular membrane of 25 cm length and 1 cm OD (Fig 5) with permselectivity of 6 against argon. The as-prepared silica membrane was encapsulated in a custom-made stainless steel membrane holder and sealed completely (Fig 6) to study the permeation properties of tubular support and silica membranes over the temperature range of 30-500°C and pressure difference range of 0.2-2 bar.

Figure 5: Tubular membrane developed in-house

On the other hand, to ensure superior thermal, mechanical, and chemical resistance ability, an all silica DDR (deca dodecasil rhombohedral) zeolite membrane with dense, interlocked structure was developed in collaboration with Central Glass & Ceramics Research Institute (CGCRI), Kolkata for separation of H_2 from HI/ I_2 mixture of HI decomposition reaction [20].

A prototype membrane reactor was developed inhouse (Fig.6) to study the permeation properties of tubular support at ambient temperature and pressure difference range of $1-2 \text{ kg/cm}^2$ using the experimental setup depicted in the schematic comprising of gas purification panel, mass flow controllers, high temperature furnace, gas chromatograph (GC) etc. as shown in Fig. 7.

Figure 6. Prototype membrane reactor developed in-house: (a) 3D schematic of membrane reactor; (b) 3D schematic of cross sectional membrane reactor showing the membrane sealed with the end connections; (c) Actual view of membrane reactor with dimensions

Figure 7: Schematic of gas permeation set up

The HI decomposition set up comprising of HI vapouriser, vertical furnace, band heaters and cold trap has been designed, fabricated and installed (Fig. 8). For trial run of the setup, decomposition of azeotropic HI (57 wt % HI in water) was carried out at 450 ° C in a tubular

reactor packed with Pt-alumina catalyst. Nitrogen was used as a sweep gas to carry the HI vapour to the reactor from HI vapouriser. The produced hydrogen, iodine and unreacted HI were passed through cold trap to condense HI and iodine. Hydrogen gas was produced which was detected by portable hydrogen detector. Studies are in progress to measure the extent of HI decomposition and optimize various associated parameters.

Figure 8: HI decomposition setup

4.3 Corrosion stability studies

The immersion coupon tests were conducted with both alumina support tube as well as zeolite coated alumina tubes to ensure their corrosion resistance behavior under HI environment. Alumina support tube was cut into pieces and immersed in HI-water azeotrope (55 wt % HI) at a temperature of 120-130°C under reflux environment as shown in Fig 9. Full form SEM and XRD analysis was also done for the tube samples (non-coated, single coated and double coated) which were exposed to heated HI for about 120 hours.

Figure 9: Set up for corrosion studies of HI decomposition reaction

The corrosion studies confirmed that no discernible changes took place in the clay alumina tube samples (with and without zeolite coating) when immersed in HI-water azeotrope (55 wt % HI) at a temperature of 120-130°C under reflux environment, for about 120 hours [20]. The scanning electron microscopy (SEM) images of the support tube samples exposed to HI solution for about 60 h in heated condition (130 °C) and about 455 h at room temperature were taken. XRD analysis was carried out for the tube samples (non-coated, single coated and double coated) which were exposed to heated HI for about 120 h. Fig. 10 (a and b) indicate the change in microstructure features of outer surface of support tube before and after exposure. Fig. 10 (c and d) show the morphological features of inner side of tube before and after HI exposure. SEM images showed that deposition of iodine had taken place in the samples, which is not significant enough to affect the ultimate performance (flux and selectivity) of membrane. Fig. 11 shows the XRD images of the tube samples [non-coated

Figure 10: FESEM micrograph of support tube (a) outer surface before HI treatment; (b) outer surface after HI treatment; (c) inner surface before HI treatment; d) inner surface after HI treatment.

Figure 11: XRD images of the tube samples (non-coated, single coated and double coated) which were exposed to heated HI solution for period of 120 hours.

(NC), single coated (SC) and double coated (DC)] which were exposed to heated HI solution upto a period of 120 hours. The figure also shows the XRD image of unexposed tube sample. "U" stands for unexposed samples and "E" stands for exposed samples. The XRD results confirm that no observable chemical changes have occurred in the samples (both bare tubes and zeolite coated tubes) after they are exposed to HI-H₂O environment at a temperature of about 130 °C. The membranes are stable with respect to operation under HI environment.

1.4 Modeling studies

The CFD (computational fluid dynamics) modeling was carried out using COMSOL to develop an understanding of membrane reactor and its performance and effectiveness in increasing the conversion of HI decomposition reaction of IS thermochemical cycle [20]. The results showed that using a PBMR (packed bed membrane reactor) instead of a PBR (packed bed reactor) leads to significant process intensification. Relative influence of different variables on conversion in a membrane reactor was also studied. It is observed that wall temperature of reactor has got a dominant influence on conversion. Among other parameters, reactor diameter, packed bed porosity and feed temperature also affect conversion significantly.

Studies on catalyst activity and non-isothermality in packed bed and coated wall configurations were also carried out [21]. Simulations to assess the impact of deviations from isothermality in packed bed reactors on the rates of HI decomposition were carried out. The activity of activated carbon catalyst for the decomposition of HI was measured in packed bed and coated wall membrane reactors of various sizes. The smaller diameter reactor showed higher apparent catalyst activity. The diameter required for a packed bed reactor to achieve near isothermal operation was estimated to be less than 1 mm. The reactivity results showed that the reactors suffered from significant temperature gradients. For a packed bed reactor, it was found that for the catalyst weight to feed flow rate ratio should be more than 40 to achieve conversion greater than 90% for the values of reactor diameter considered in the study (1, 2, 4 and 10 mm). For a coated wall reactor, it was found that less than 0.5 mm diameter is required to achieve near isothermal operation. In the coated wall configuration, the coating thickness affects the conversion for small diameter (0.5 – 1 mm) reactors, but the effect gets diminished for higher reactor diameters.

Evaluation of different approaches of scale-up of packed bed membrane reactor (PBMR) was also made by numerical simulations. A small-scale PBMR reactor (length = 1 m and diameter = 0.1 m) gives 83.4% conversion. The conversion obtained in a longer PBMR handling twice the feed velocity of the small-scale PBMR (keeping residence time constant) is 82%. The PBMR having twice the diameter of the small-scale PBMR gave only 61% conversion. Residence time of reactant species was constant in all the cases. The conversion obtained in the longer PBMR is almost same as that obtained in the small-scale PBMR but pressure drop is observed to be much higher. Hence, to scale up the membrane reactor, an effective way would be to put small diameter reactors in parallel than having a reactor with larger diameter.

4. Conclusion

It is believed that inclusion of membrane based technologies in the processing of HI_x section of IS thermochemical process would be a sincere augmentation to the existing and proven technologies. The identification and development of a defect-free, high flux, hydrogenpermselective membrane, chemically compatible catalyst, suitable MR configuration configuration (packed bed or coated wall), corrosion-resistant reactor material, and high temperature sealants are the key milestones, and the work on each of the associated fields is in progress in Desalination Division to achieve the desired objectives. On the other hand, efforts are underway to gather the data pertaining to the corrosion stability analysis of all the systems/components in real HI decomposition stream as shown in Fig. 12.

Figure 12: Setup for corrosion resistance studies in simulated experimental conditions

Modelling studies are underway on EED process to assess the influence of important operating conditions on its performance. Presently, work carried out has been limited to batch studies on HI concentration and HI decomposition in isolation from each other. Further to this, both the systems (EED and MR) will be integrated and experimental studies will be made in a continuous mode to assess the performance of the system in entirety. Refractory membrane materials like tantalum and niobium, which have got inherent infinite selectivity towards hydrogen, and reasonable corrosion stability against HI environment, are under development.

Acknowledgement

We are thankful to Shri. R.B. Bramhane (TECH-C, DD) for his aid in the execution of the experiments and Shri R. S. Tidke (D MAN B1, DD) for preparation of drawings for the membrane reactor.

References

- L.C. Brown, G.E. Besenbruch, R.D. Lentsch, K.R. Schultz, J.F Funk, P.S. Pickard A.C. Marshall and S.K. Showalter, *Final Technical Report* for the period August 1, 1999 through September 30 (2002), GA–A24285.
- W.A. Summers, Centralized Hydrogen Production from Nuclear Power: Infrastructure Analysis and Test-Case Design Study. *Interim Project Report*, Task A.1, Nuclear Hydrogen Plant Definition, NERI Project 02-0160, WSRC-TR-2003-00484 (2003). Savannah River Technology Center, Aiken, S.C.
- 3. M. Nomura, S. Kasahara, H. Okuda and S. Nakao, *Int. J. Hydrogen Energy*, 30 (2005) 1465.
- 4. S. Goldstein, J. M. Borgard and X. Vitart, *Int. J. Hydrogen Energy*, 30 (2005) 619.
- A.L. Duigou, J. M. Borgard, B. Larousse, D. Doizi, R. Allen, B.C. Ewan, G.H. Priestman, R. Elder, R. Devonshire, V. Ramos, G. Cerri, C. Salvini, A. Giovannelli, G.D. Maria, C. Corgnale, S. Brutti, M. Roeb, A. Noglik, P.M. Rietbrock, S. Mohr, L.D. Oliveira, N. Monnerie, M. Schmitz, C. Sattler, A.O. Martinez, D.D.L. Manzano, J.C. Rojas, S. Dechelotte and O. cBaudouin, *Int. J. Hydrogen Energy*, 32 (2007) 1516.
- G. Cerri, C. Salvini, C. Corgnale, A. Giovannelli, D. L. Manzano, A. O. Martinez, A. L. Duigou, J. M. Borgard and C. Mansilla, *Int. J. Hydrogen Energy* 35 (2010) 4002.
- 7. C. Kane and S.T. Revankar, *Int J Hydrogen Energy*, 33 (2008) 5996.

- 8. S. Kasahara, S. Kubo, K. Onuki, M. Nombra, *Int J Hydrogen* Energy, 29 (2004) 579.
- 9. D.O. Keefe, C. Allen, G. Besenbruch, L. Brown, J. Norman, R. Sharp and K. McCorckle, *Int J of Hydrogen Energy*, 7 (1982) 381.
- 10. G. Arifal, J. Hwang and K. Onuki, *J of Membr. Sci*, 201 (2002) 39.
- 11. K. Onuki, G. Hwang, G. Arifal and S. Shimizu, *J of Membr Sci*, 192 (2001) 193.
- 12. S-D Hong, C-H Kim, J-G Kim, S-Ho Lee, K-K Bae, and G-J Hwang, J. Ind. Eng. Chem., 12 (2006) 566.
- 13. S. Kar, R.C. Bindal, S. Prabhakar and P.K. Tewari, *Int. J. Hydrogen energy*, 37 (2012) 3612.
- 14. S. Kasahara, G.J. Hwang, H. Nakajima, HO-Sang Choi, K. Onuki and M. Nomura, *J. Chem. Eng. Japan*, 36 (2003) 887.
- J. H. Norman, G. E. Besenbruch, D. R. O'Keefe and C. L. Allen (1982), Thermochemical water-splitting cycle, benchscale investigations, and process engineering, final report for the period February 1977 through December 31, 1981, *General Atomics Report* GA-A16713, DOE Report DOE/ ET/26225-1.
- S. Kasahara, S. Kuboa, R. Hinoa, K. Onukia, M. Nomurab, S. Nakao, Int. J. Hydrogen Energy, 32 (2007) 489.
- 17. Y. Shin, K. Lee, Y. Kim, J. Chang, W. Cho, K. Bae, International Journal of Hydrogen Energy, 37 (2012) 16604.
- 18. G-J Hwang and K. Onuki, J of Membr Sci, 194 (2001) 207.
- S. Kar, R.C. Bindal, S. Prabhakar, P.K. Tewari, S. Ramanathan, J. Nuwad, et al., *Int J Nucl Hydrogen Production Appl*, 2 (2011) 227.
- 20. A. Bose, N. Das, S.N. Roy, N. Goswami, S. Kar, R.C. Bindal and P.K. Tewari, *Int. J. Hydrogen Energy*, 39 (2014) 12795.
- N. Goswami, K.K. Singh, S. Kar, R.C. Bindal and P.K. Tewari (2014), N. Goswami, S. Kar, R.C. Bindal and P.K. Tewari, *Int. J. Hydrogen Energy*, 39 (2014) 18182
- 22. N. Goswami, S. Kar, R.C. Bindal and P.K. Tewari, *Int J Nucl Hydrogen Production Appl* (in press).

Nitesh Goswami is a Young Scientist working in Desalination Division of BARC. He is involved in the experimental and modelling studies for evaluation of membrane reactor in IS process for hydrogen production. He is a life member of Indian Desalination Association.

Shri A. K. Singha is working as Scientific Assistant D in Desalination Division, BARC. He is engaged in design and drawing of membrane assisted devices, membrane casting /coating machine for sheet membrane and capillary membrane development activities. He is also involved in membrane configuration development, like membrane reactor for gaseous separation and spiral module reverse osmosis and capillary module ultrafiltration membrane units for liquid effluent treatment.

SMC Bulletin Vol. 5 (No. 2) August 2014

Soumitra Kar is a Young Scientist working in the Desalination Division of BARC. He is associated with the development of inorganic and organic membranes and membrane-assisted physicochemical processes for gas separation, water purification and effluent treatment. He is also actively involved in the development of carbon nanotube-based separation systems. He is a life member of American Nano Society and the Indian Desalination Association.
R.C. Bindal is a Senior Scientist in the Desalination Division of BARC. He has been associated with the development of different types of membranes and membrane-based water purification devices. He is instrumental in developing five different water purification/ industrial effluent treatment technologies including the technologies for microorganism, fluoride and arsenic decontamination. Currently, his area of interest includes development of inorganic and mixed matrix nanocomposite membranes for radioactive waste treatment and gas permeation studies. He is member of several professional bodies associated with water technologies.
P.K. Tewari is a Distinguished Scientist and Head of the Desalination Division and Associate Director, Chemical Engineering Group of BARC. He is the President of the Indian Desalination Association and sits on the Board of Directors of the International Desalination Association. He is the Chairman of the International Nuclear Desalination Advisory Group (INDAG) of the International Atomic Energy Agency (IAEA). He has been involved in providing consultancy services to several organisations on desalination and water purification. He is the co-Chairman of the Editorial and Scientific Committee of the International Journal of Nuclear Desalination, member of the Editorial Board of Desalination and Water Treatment Science and Engineering and Editor in-Chief of International Journal of Nuclear Hydrogen Production Applications.

An Overview of Material Requirements for Copper-Chlorine Thermochemical Cycle: ONGC Energy Centre Perspective

D. Parvatalu

ONGC Energy Centre, IEOT, Phase-II Complex, Panvel-410 221 Email: parvatalu_d@ongc.co.in

Abstract:

Thermochemical Hydrogen generation by water splitting processes is gaining popularity in view of their potential for meeting massive scale energy requirements in near future although their temperature requirement is very high. Thermochemical Copper-Chlorine cyclic process that works at 550 °C is one of the many cyclic processes reported and being pursued. Although the temperature requirement of this cycle is relatively less and the reported process scheme appears simple despite solid handling problems, several technical issues need to be addressed including the material challenges to make the process commercially viable for hydrogen generation in an affordable way. The paper discuss the details of process along with reported variations in terms of improving the simplicity in operations and increasing the operational efficiency besides the focus on material challenges and way forward in ONGC Energy Centre perspective.

1. Introduction

Growing concern on environmental pollution as a result of excessive use of hydrocarbons that are fast depleting from the planet earth has prompted fast track research on several alternative sources of energy. However, in view of limitations of popular primary energy sources like Solar, wind, Geo-thermal, Nuclear etc., that cannot substitute the existing fossil based economy, hydrogen, an energy carrier is considered to be the future fuel [1]. At present it is mostly produced from fossil fuels for captive use at refineries, fertilizer industries etc., and thus the need of hour is to focus on development of non-polluting technologies. Hydrogen generation by closed-loop thermochemical water splitting processes that work at high temperatures (500-2000 °C) are thus gaining momentum as they have the potential for massive scale applications using Nuclear/Solar sources.

Among several cycles reported in the literature [2-4], Copper-Chlorine (Cu-Cl) cycle requires relatively less temperature of 550 °C. Argonne National Laboratories (ANL), US has first introduced the conceptual hybrid Cu-Cl cycle [5] that involves a series of coupled electrochemical and thermochemical reactions to form a closed-loop. The very reason that this cycle does not involve catalytic processes as compared to Iodine-Sulfur cycle which works at very high temperature ~900 °C makes it less complicated. But still, for reasons not clearly understood, except ANL, USA and Atomic Energy of Canada Ltd (AECL), Canada the cycle is not pursued by many cross-continental researchers who otherwise are active in I-S cycle studies. Thus the available information in the literature is confined to a couple of sources only. The situation needs to be improved in the coming years for finding techno-economically feasible solutions in the long run. Thus it makes business sense for development of a suitable technology for this cycle as it appears lucrative primarily due to expected benefits like achievable efficiencies of the order of 50%, availability of a wide choice of materials and a flexible heat source. Nevertheless, current studies are still at R&D stage more precisely at lab engineering scale of development and thus certain material issues viz., extensive solid handling, material challenges involved in handling known corrosive chemicals like aqueous / gaseous HCl, oxygen, Chlorine etc., up to 550 °C and operation of electrochemical cells in conjunction with chemical reactors for continuous operations need to be addressed before reaching commercial scales. Recently, several variations of the cycle are reported in the literature that focus on reduction in number of steps, ease of operation with a minimum solid handling etc., leading to increase the operational efficiency. Current R&D activities around the world indicate that this cycle is extensively pursued by ANL and Atomic Energy Commission Ltd (AECL), Canada and their partner universities mainly University of Ontario Institute of Technology (UOIT). In India, ONGC Energy Centre (OEC) in collaboration with various technical universities is in the process of development of this cycle. The proof of concept of this cycle has been reported with several variations but still the closed-loop establishment is yet to be reported and thus materials suitable for technology development are still indicative in nature. The present paper attempts to present

an over view of development of Cu-Cl cycle with a focus on material requirements as perceived by OEC to enable further research on finding techno-economically viable solutions in the overall development of this cycle.

2. Cu-Cl Process:

As per the initial ANL scheme, in this cycle water is split into hydrogen and oxygen using a combination of chemical and electrochemical reactions involving copper and its compounds without involving any catalysts. It involves extensive handling of solid copper compounds and gaseous/aqueous HCl at high temperatures that are produced and regenerated within the cycle. The sequence of cyclic processes as reported by Rosen et al [6] form a conceptual loop consists of following five steps:

1. $2Cu(s) + 2HCl(g) \rightarrow 2CuCl(l) + H_2(g)$ 450°C

2.
$$4\operatorname{CuCl}(s) + 4\operatorname{Cl}(aq) \rightarrow 4\operatorname{CuCl}_2(aq)$$

 $4\operatorname{CuCl}_2(aq) \rightarrow 2\operatorname{CuCl}_2(aq) + 2\operatorname{Cu}(s) + 4\operatorname{Cl}(aq)$
(*Electrolytic reaction*)*

3. $2CuCl_2(aq) \rightarrow 2CuCl_2(s)$ 100°C

4.
$$2\operatorname{CuCl}_2(s) + \operatorname{H}_2O(g) \rightarrow \operatorname{CuO.CuCl}_2(s) + 2\operatorname{HCl}(g)$$
 400°C

5. CuO.CuCl₂(s)
$$\rightarrow$$
 2CuCl(l) + 1/2 O₂(g) 500°C

In the first step, solid copper is fed into reactor along with a stream of HCl gas to form hydrogen gas and molten CuCl at 450°C; the latter being cooled and by solubilized in a sufficiently concentrated HCl (5 - 6 N) to feed to a membrane electrochemical reactor where it is disproportionated to fine solid copper powder and acidic aqueous CuCl₂ as per the following details:

Anode reaction: $\operatorname{CuCl}_2^- \leftrightarrows \operatorname{CuCl}_{2(\operatorname{aq})}^+ e^- = E^0 = 0.15 \mathrm{V}$ Cathode reaction: $\operatorname{Cu}^+ e^- \leftrightarrows \operatorname{Cu} = 0.52 \mathrm{V}$

 $CuCl_2$ solution is dried to separate form aqueous HCl to get $CuCl_2$ powder and then hydrolyzed at elevated temperatures to obtain copper oxychloride (Cu_2OCl_2) which is finally decomposed to get oxygen and CuCl.

3. Some challenges

Although these reactions appear simple, there are several practical difficulties associated with some of the reactions. For instance, electrochemical generation of copper particles at required 3 - 5 μ m in an efficient way is a tough task. Another difficulty associated with the electrochemical reaction is the selection of membrane suitable for long-term applications as at present, the choice for commercial applications is limited. In hydrolysis reaction, excess amount of steam is required to produce desired results and thus making it a difficult task in latter stages to remove the excess water. In addition, although

ANL has reported the formation of copper oxychloride detailed laboratory studies by OEC and collaborators [7] that it is difficult to get the reported products under normal operating conditions leaving aside the difficulties associated with its characterization. Simulations and Modeling of entire cycle is another challenge in view of difficulties associated with solid handling and problems encountered in electrochemical simulations. Recent developments in Aspen simulations give a ray of hope but still there is a dearth of information for successful application. Detailed calculations of thermal energy requirements of the cycle involving exothermic (-330 kJmol⁻¹) and endothermic (680 kJmol⁻¹) components of heat including electrochemical work suggest that there is a lot of scope for improving the overall heat to hydrogen efficiency of the cycle >40% with proper heat management. However, as observed by Rosen [4], exergy analyses are needed to understand and reduce losses.

4. An over view of recent developments in Cu-Cl cycle:

The recent modification of the five-step cycle as reported by Lewis et al [8] outlined that the first two reactions can be replaced with a single electrochemical step:

$2CuCl + 2HCl (g) \rightarrow 2CuCl_2 (l) + H_2 (g)$ 80-100°C, 20 bar

where, the cathodic reaction of original electrochemical reaction is replaced with a hydrogen generation reaction. This approach involves minimal solid handling to the extent of eliminating solid copper handling and is further pursued by ANL and AECL. However, as observed by OEC and collaborators [9] the method has its own difficulties of handling high pressure electrochemical systems besides finding highly stable, selective and costeffective membranes that are industrially acceptable in the long-run.

Lewis et al [10] have indicated the possibility of replacing CuCl_2 hydrolysis and Copper oxy- chloride decomposition steps with a single oxygen generation step directly from hydrolysis step at about 700°C.

It leads to understanding from the above developments that it is possible that entire five step-cycle can be reduced to a simple 2-step cycle. Although this latest development is beneficial to the extent of reducing no. of steps to facilitate operational simplicity, it will invite more challenges of choice of heat source, material for equipment at high temperatures and product separations making it not very popular.

In a series of communications, Lewis et al [11-13] described the evaluation methodology; selection criteria of alternative cycles and the efficiency calculation, updating thermodynamic data base, development of a robust flow sheet using Aspen Plus simulator by optimizing the energy usage within the cycle, design of a conceptual process incorporating the Aspen Plus mass and energy flows, efficiency(40%) calculation and estimation of energy costs (\$3.30/kg) based on hydrogen production plant capacity of 125M.T/day. Orhan et al [14] have done cost analysis and sensitivity analysis of a Cu-Cl pilot plant with an associated parametric study taking several scenarios into consideration. The scale-up of the Cu-Cl cycle from proof-of-principle tests to a larger engineering scale of 3 kg/day is currently under development at the University of Ontario Institute of Technology in collaboration with its partners that include Atomic Energy of Canada Limited (AECL). Feasibility study of a solar based Cu-Cl cycle was reported by Ghandeharium et al [15] in which details of solar energy source, different capacities at three different locations in Canada, efficiencies etc. Naterer et al [16-17] have given details of individual process and reactor developments within the Cu-Cl cycle (5-step and 4-step processes), thermochemical properties, advanced materials, controls, safety, reliability, life cycle assessment, simulations/ modeling, economic analysis of electrolysis at off-peak hours, and integrating hydrogen plants in conjunction with Canada's nuclear power plants, especially with Super Critical Water Reactor [SCWR]. Wang et al [18] discussed thermodynamic and experimental studies leading to process integration of hydrolysis electrochemical and oxygen generation reactions mainly focusing on various technical challenges associated with the closedloop operation of the cycle.

In a series of recent communications, Naterer et al [19] reported simulations, thermochemical data, advanced materials, safety, reliability and economics of the Cu-Cl cycle. Aspen Plus simulations of various system configurations were performed to improve the cycle efficiency, modeling of the linkage between nuclear and hydrogen plants demonstrates how the Cu-Cl cycle could be integrated with a Super Critical Water Reactor; Canada's Generation IV reactor (SCWR). Useful fundamental data viz., Chemical potentials, solubility, formation of Cu(I) and Cu(II) complexes and properties of Cu₂OCl₂, Cu(I) and Cu(II) chloride species were also reported by these researchers. Development of new advanced materials with improved corrosion resistance in relation to performance of new anode electrode structures and thermal spray coatings was also presented [20]. In a detailed communication, unit operation experiments viz., in hydrolysis, electrolyzer,

studies on corrosion resistant coating materials and system integration were reported by Naterer and co-researchers [21] recently. Some of the studies include long-term electrolyzer performance over 1600 h of operation at constant voltage of 0.7V, membrane performance studies, scaling up of electrolyzer to 300 cm² that showed a current density of 550mA/cm² at 0.7V was also reported. Design of a molten salt reactor, parametric study of multi-generation energy systems incorporating the Cu-Cl cycle leading to estimation of overall energy efficiency of 57% and exergy efficiency of hydrogen production up to 90%

OEC and collaborators [22] have successfully established the proof of concept of this cycle using a combination of electrochemical and thermochemical reactions and are in the process of developing the closed loop using metallic (Hastelloy) reactor system for generation of hydrogen @ 25 LPH. The electrochemical reaction involves copper and CuCl₂ generation process which is carried out at room temperature. While the cell is fabricated with an acrylic material, copper and Platinum / Graphite electrodes separated by a commercially available anion-exchange membrane are employed.

5. Materials for use in Cu-Cl cycle:

Although it is interpreted that since the maximum operating temperature of this cycle involves about 550°C, there is a wide choice of materials lining up for its development. Thus the eventual commercial success of the cycle depends on material research. As suggested by Wong and Tessler [23] while taking decisions on the materials of construction(MoC), several aspects like resistance to corrosive media, thermal conductivity mechanical and creep properties, allowance for non- destructive testing during fabrication and also in service hot and cold formability, weldabilty, and availability need to be considered to make building of a hydrogen production plant practical.

As seen in the cycle, maximum solid handling is involved in almost every reaction step which is the main inconvenience in plant level operations, keeping aside their exact contribution to corrosivity of the metals employed. The cycle contains a mixed (oxidizing and reducing) environment and thus right choice of materials need to be specific to the given conditions. Several alloy materials containing high Ni/Cr content like Hastelloy C-22, 24, 276 etc., are reported [24-26] in the literature for HCl, Cl₂, CuCl₂ environments under the operating temperatures of the cycle but one needs to confirm their practical utility by conducting suitable tests for prolonged periods of time. To start with, the prevailing industrial practice of corrosion allowance of < 0.1 mmy is the right guideline for selection of materials.

Rosen et al [6] observed that high performance metal alloys cannot withstand corrosive fluids over a long duration. High temperature alloys with coatings of silicone based ceramics appear promising in this regard, but their thermal behaviour and surface interactions in high-temperature multiphase conditions must be studied. Further data is needed to better understand the functionality of these materials with the working fluids in the Cu-Cl cycle. This includes thermal behaviour, mechanical stresses, and fracture toughness, strength and corrosion resistance over time. Nokleby et al [27] suggest spray coatings, nickel-based alloys, glass-lined steel, refractory and other advanced materials are the subjects of research to meet these material challenges. While examining various metals for suitable application in this cycle, these authors expressed that since the predominant Ni and Cr species are solids it suggests that a corrosion resistant protective layer could be formed on the metal. Based on this logic, they continued work [19-20] on several other combinations of Ni-based alloys to assess their suitability and have discussed various options. It was opined that Ni and Cr species can be used as coatings on metal since they form corrosion resistant protective layer on the metal. Among corrosion resistant coatings viz., nickel alloy, Zirconia, alumina etc., Zirconia seems to have performed better than alumina. Stainless steel showed poorer corrosion resistance in this cycle. Glass lined metal as a material of construction materials of construction for the CuCl/HCl electrolyzer may be suitable however it was found that glass may dissolve up to 0.7 mm/ annum in aqueous conditions ceramic carbon electrodes (CCE) for the anode of the CuCl/HCl electrolysis cell. While the recent development of CCE for use in this cycle for use as anodic materials in place of costly Platinum is currently pursued by ANL-AECL and their collaborators, simultaneous thrust [19-21] on reduction in the total amount of Platimum to ~0.3mg appeared meeting the requirements in electrolytic hydrogen generation step.

Besides selecting the material of construction for reactors, electrodes etc., one has to look out for equally important area, membranes used in this process. A detailed review [28] on membranes gives the recent developments along with relative merits and demerits of wide range of membranes including zeolite membranes, silica membranes in addition to metallic membranes and may be taken as a good guideline in this aspect. From this review it appears that almost all the available membranes do not have much tolerance for moisture. It can be visualized that the cycle requires membranes in several reactions for use in prevailing wet mineral acid media viz., $HCl-H_2O$ and also for gaseous separations like H_2-N_2 , O_2-N_2 , Cl_2-N_2 etc. These are required in hydrogen /oxygen generation reactions where the products are to be separated from carrier gas and water vapour etc., electrochemical rectors that need both anion / cation exchange membranes as may be the case with the modified cycle, separation of HCl from water etc. While anion-exchange membranes are required for the reactions involving copper recovery, the cation-exchange membranes are needed in electrochemical hydrogen generation reactions.

Besides material of construction and other issues, it is well reported that commercial success of these cycles is dependent on easily available and affordable viable heat source which is expected to be either Nuclear and / or Solar. But issues related to coupling of these sources to thermochemical cycle still need to be addressed. AECL has initiated some work on this aspect in context with the envisaged application using SCWR [28] or solar driven molten salt reactor [29].

6. Need of the hour:

As there are no proven off the shelf solutions available for immediate applications to take these processes to commercial scale and the current status of the work is now at a lab engineering scale in order to go beyond this stage, transforming the available knowledge and expertise to develop technologies on a fast track mode is the need of hour. Needless to emphasize the fact that before taking these studies to next higher levels, several technical issues related to processes, materials, sources for their fabrication / supply etc., need to be addressed by pooling scattered domestic solutions and/or cross-continental cooperation so that the technologies can be developed at the earliest in a techno-economically feasible way. Some of the challenges that need to be addressed include:

6.1 Modification in Process

The existing processes are based on lab scale experiments and available process gadgets. Thus it is required to develop:

- Energy efficient process schemes to modify the conventional schemes to facilitate ease of operation, safety of resources etc.
- Better separation strategies including membrane separations in place of distillations wherever applicable
- Handling solids flow to and fro reactors

- Handling corrosive acids especially the azeotropes HCl-H₂O
- Improvement in Simulation / Modeling studies for quick solutions that accommodate wider options for solid handling
- Electrochemical generation of fine particles (< 2 μm sized)
- Minimization of aerial oxidation of reactants/products in Cu-Cl cycle

6.2. Identification of Alternate Materials

As already mentioned, the current development of this cycle is based on the experience and knowledge of some groups/ individual researchers working in specified areas and to a certain extent is confined to certain pockets. However, with the advent of Science &Technology, scattered solutions that exist might be getting unnoticed. Thus it is felt that a broader outlook with a commercial angle is thus required to explore the possibility of using alternate materials in various reactions involved in these cyclic processes.

- Non-Platinum electrode materials for use in HCl media for use up to 100°C and 24 bar including electrocatalysts
- Electrochemical cells for HT-HP operation for prolonged period applications
- Membranes for use in prevailing wet mineral acid media viz., HCl-H₂O and also for gaseous separations like H₂-N₂, O₂-N₂, Cl₂-N₂ etc.
- Reactor materials for use in Cu-Cl cycle for various reactions up to 530 °C.
- At present, there is a limited choice of materials for use in this cycle. Although high Ni-Cr based alloys appear to work, supporting information is very limited.

6.3 Testing Facilities

The existing corrosion testing facilities for screening materials do not provide ample scope to work at very H.T-H.P conditions in acid media prevailing in both the cycles. Thus it is needed to:

- Develop testing facilities for screening available materials for their corrosion resistance / behaviour up to 600 °C and pressures up to 20 bars.
- Create facilities for assessing mechanical properties of materials under operating conditions
- To develop standards /codes for materials testing etc.

6.4. Development of Materials

As understood several materials reported in the literature need to be developed at large scale to cater to growing needs in near future. A preliminary market survey does not indicate their availability in the open market ingeniously. It is thus required to:

- Out of box solutions to phase out use of noble / exotic metals with easily available and affordable metals/ materials.
- Develop alloys containing some typical combinations of selected metals to avoid costly materials like Platinum.
- Develop indigenous sources of fabricators for specified materials
- Develop alternate materials viz., membranes, electrocatalysts etc., that are stable/durable for longer times under the operating conditions
- Use of composites wherever applicable

7. Conclusion

- Hydrogen is set to take a lead role in energy business in future; large scale technology development to generate it in an easily available and affordable way is required.
- Development of closed-loop thermochemical hydrogen generation technologies using Nuclear and/or Solar heat source through Copper-Chlorine cyclic processes appears lucrative but technical challenges need to be addressed.
- There is a gap between current research efforts on development of materials to contain the prevailing harsh acidic environment in this process before commercial realizations.
- Although good no. of materials are available for applications in acid media in the specified temperature range of the cycle, their suitability needs to be ascertained
- Hastelloy, Inconel appear useful for MoC in Cu-Cl cycle but their ultimate utility at commercial level needs to be examined by conducting long-term tests under prevailing harsh conditions preferably at different laboratories for taking plant level decisions.
- Besides reactor materials, equal emphasis needs to be laid on development of catalysts, membranes etc.
- The much talked about coupling of heat source viz., Nuclear and /or Solar Thermal to Thermochemical

cycle is a challenge in view of material issues and thus need to be addressed in parallel

Acknowledgement

The author is grateful to Dr. Bharat Bhargava, Director General, OEC for guidance and support and Mr. Puneet Kishore, G.M(P)-Head, OEC for encouragement, all OEC Collaborators for useful interactions and thank Dr. S. Banerjee, D.G.M (Chem) for help and Ms. Kamini Sivakumar, Sr. Project Fellow for assistance. Financial assistance form CHT/OIDB under HCF is greatly acknowledged.

References

- 1. M. Momirlan and T.N. Veziroglu, Int. J. Hydrogen Energy, 30(2005)795
- 2. J.E. Funk. Int. J. Hydrogen Energy 26 (2001)185
- 3. T. Kodama and N. Gokon. Chem. Rev. 107(2007)4048
- 4. M.A. Rosen. Energy 35 (2010) 1068
- M.A. Lewis et al. GLOBAL 2003 conference, New Orleans, USA, November 16-20, 2003
- M.A. Rosen, G.F. Naterer, R. Sadhankar and S. Suppiah, Canadian Hydrogen Association work shop, Montreal, Quebec; October 19-20, 2006
- 7. D. Parvatalu, Anil Bhardwaj and B. N. Prabhu. *ICAER-2011*, paper 174, December 9-11, 2011, Mumbai, India
- 8. M.A. Lewis, J. Marsin and A. Taylor, November, 2006, *AIChE Annual meeting*, Sanfrancisco, USA.
- N. Sathaiyan et al paper titled" Hydrogen generaion u Hydrogen Generation through Cuprous Chloride-Hydrochloric acid Electrolysis" under communicated to *Energy*
- M.A. Lewis Presentation at ORF Workshop, , University of Ontario Institute of Technology, Oshawa, Ontario, Canada, 28 May 2007.

- 11. M.A. Lewis, J. G. Masin and P. A. O'Hare, Int. J. Hydrogen Energy 34(2009)4115
- 12. M.A. Lewis, J. G. Masin, Int. J. Hyd. Energy 34(2009) 4125
- M.A. Lewis, M.S. Ferrandon, D.F. Tatterson and P. Mathias, Int. J. Hyd. Energy 34(2009) 4136
- 14. M.F. Orhan., I. Dincer and M. A. Rosen, 2008, *Chem. Engg. Science*, 33(22), 6456-66
- S. Gandheharium, G. F. Naterer, I. Dincer and M.A. Rosen., 2010, Int. J. Hydrogen Energy 35(2010) 8511-8520
- 16. G.F. Naterer et al. Int. J. Hydrogen Energy, 34(2009) 2901
- 17. G.F. Naterer et al, Int. J. Hydrogen Energy, 35(2010)10905
- 18. Z. Wang, et al. Int. J. Hydrogen Energy 37 (2011) 11258
- 19. G.F. Naterer, et al. Int. J. Hydrogen Energy 36 (2011) 15472
- 20. G.F. Naterer, et al. Int. J. Hydrogen Energy 38 (2013) 740
- 21. G.F. Naterer et al. Int. J. Hydrogen Energy 39(2014) 2431
- 22. D. Parvatalu and B.N. Prabhu, paper No. OT-0092 presented at *CORCON 2013* HELD in New Delhi
- 23. B. Wong and P. Trester, Materials for the Hydrogen economy, Ed. R.H. Jones and G.J.Thomas. *CRC press*, Chapter 4 (2008).
- 24. C.M. Schillmoller, Nickel Development Institute Technical series No.1020
- 25. Haynes International, *Inc. Technical Bulletin* "Hastelloy C-276 alloy" issued in 1997
- 26. Special Metals Corporation Technical Brochure on High performance alloys for resistence to aqeous corrosion.Web source: *www.specialmetals.com*
- 27. Nokleby et al., Sustainable Hydrogen Production Research at UOIT and Partner web source: http://hydrogen.uoit.ca/EN/main/research/CuCl/Materials_Corrosion.html.
- M.W. Ockwig and T.M. Nenoff, *Chem. Rev.*, 110, 4078-4110, 2007; M.F. Orhan., I. Dincer, G.F. Naterer and M. A. Rosen, *Int. J. Hydrogen Energy*, 35(2010) 1560
- 29. Z. Wang, G.F. Naterer and K. Gabriel. Int. J. Hydrogen Energy 37 (2012) 16557

Dr. D. Parvatalu, has been working as a Dy. General Manager (Chemistry) in ONGC for the last 3 decades and has vast experience in quality monitoring /control in upstream Oil/Gas production operations in both offshore and onshore fields, quality certification of oil field chemicals for corrosion, scale, microbiological control, Flow improvement etc., and has been associated with R&D activities to find solutions to field problems in specific areas like corrosion, scaling, flow improvement etc. For the last 7 years he has been working as a Project Manager of Hydrogen Project of ONGC Energy centre and associated with planning / coordination activities related to development of facilities for thermochemical hydrogen generation technologies using Iodine-Sulfur and Copper-Chlorine cyclic processes. He has over 35 publications/presentations in various international/ national conferences/journals to his credit. He is member of several distinguished professional institutions like NACE, SPE, SAEST, IAHEAM, HAI etc.

Design of Photoelectrohemical Materials Via Non-Native Nanostructures and their "Click" Assembly into Photoreactor

Dilip Kumar Behara¹, Sulay Saha¹, R. Babu², Malay Kumar Das², Sri Sivakumar^{1#}and Raj Ganesh S Pala^{1#}

¹Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India ²Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India #Material Science Programme, Indian Institute of Technology, Kanpur, UP-208016, India

Abstract

The goal of economical photoelectrochemical (PEC) water splitting has gained more importance in view of the dwindling non-renewable energy resources. In this context, the search for a good photomaterial is restricted within earth abundant elements and its compounds having good photon absorption in solar spectrum, effective charge-carrier separation and surface electrochemistry. We propose that modulation of desirable material properties can be achieved by stabilization of 'non-native' structures which are nanostructures having discrete translational symmetry in the sub-surface regions different from that present in the sub-surface regions of large crystals. These non-native structures have different physico-chemical properties (e.g. band-gap, band-edge) and catalytic activity in comparison to bulk 'native' structure due to different chemical coordination. One of the effective ways to circumvent charge-carrier separation and transport is through design of heterostructures via native phase and non-native phase. The proposed design is found to give higher photon absorption compared to individual phases. Finally, "click chemistry" is utilized as a tool to assemble stable photo-electrodes into solar chemical reactors. Further, a small scale modular PEC device has been fabricated (which can be scaled up) to test the fabricated photo electrodes.

Introduction

A large portion of world energy consumption is derived from non-renewable energy resources such as natural gas, oil, and coal. Replacing this source of energy by environmentally friendly solar energy has been drawing more attention than ever before[1,2]. The available solar energy can be harvested in a photovoltaic device (PV), where it may be either directly converted to electrical energy or captured in a photo-electrochemical cell (PEC) device through performing an endothermic reaction such as water splitting[3-5], oxidation reactions[6], CO₂ conversion [7] and in the process generating solar-produced chemicals or fuels. A sustainable approach to large-scale solar-energy devices relies on two qualitatively different approaches, namely, high-cost and high-efficiency devices or relatively lower-cost and lower efficiency devices. Central to the latter approach is the utilization of liquid-phase processing of earth-abundant compounds that do not rely on expensive single-crystal substrates, thin films, or vacuum fabrication techniques. Semiconductors play a central role in such devices, and there have been many efforts to improve its photocatalytic efficiency. The choice of semiconductor material is constrained by limiting factors such as (1) bandgap in visible region, (2) low light penetration depth, (3) chemical stability, (4) high conductivity of majority and minority carriers with high lifetime and (5) desirable flat band positions for surface redox reactions.

The development of highly efficient corrosionresistant photoelectrode materials and their processing technologies are most important in the context of efficient hydrogen production from solar energy through water photolysis. The most challenging aspects or important parameters in meeting this are band-gap tuning, bandedge alignments, surface activity, stability in solution, and most importantly abundant availability or low cost. To date, no suitable material (nanostructure/film) has been demonstrated to meet all the requirements. Therefore, a fundamental materials research is needed for tailoring band-gap and band edge alignments for proper solar absorption and charge carrier transport and movements. Further, we require rational strategy to modify the surface chemistry and associated effects on surface as well as bulk semiconducting properties (e.g. light absorption, interfacial charge transfers including Schottky and Helmholtz barrier, flatband potential, etc.) which profoundly influence the efficiency of photo materials. In addition, corrosion and photo-corrosion problems limit the efficiency of PEC water splitting.

Native/Non-native structures: While modulation of properties via variations in chemical composition has been explored extensively in the context of hydrogen generation using photo-electrochemical (PEC) systems, comprehensive modulation of properties via variation of nanostructure has not been pursued. Engineering of material properties can be

done by modulating the subsurface and surface structure of nanomaterials in a controlled manner. In this context, we introduce the concept of "non-native" structures, which are nanostructures in which the discrete translational symmetry in the sub-surface regions is different from that of the discrete translation symmetry present in the sub-surface regions of large crystals [8]. The sub-surface structure of the large crystals is identified as the native structure of the material. These non-native structures are stable in nano-regime due to having less surface energy than their bulk structure counterpart. Studies suggest that the non-native structures are stabilized stable up to a critical size after which it undergoes phase transformation to its native structure. To analyze the energy landscape below and above this critical size, the total energy of the a thin film is partitioned in following way,

$$E_{t} = (1 - 2)E_{ss} + 2E_{s} = 1E_{ss} + \gamma$$
(1)
and $[\gamma = 2(E_{s} - E_{ss})]$ (2)

Where E_t is the total energy of a thin film having 'l' number of stoichiometric layer, E_s is the energy associated with the surface layer, E_{ss} is the energy associated with the sub-surface layers and γ is the surface energy. Below the critical thickness (n_c), the non-native structure is thermodynamically stable and satisfy the following inequality,

$$n_{c}(E_{s}^{N}-E_{s}^{NN}) \geq (\gamma^{NN}-\gamma^{N})$$
(3)

As the chemical coordination is different in the native and non-native structures, properties like band-gap, band-edges and surface electrocatalytic properties is also different.

Since non-native structures are typically more stable as nanostructures, they will provide higher surface area with larger number of active sites. To illustrate these concepts, we give example of TiO₂ and Fe₂O₃ which are most widely used PEC materials. Among the polymorphs of TiO₂, we are considering anatase and rutile which are photocatalytically active. Rutile structure is identified as a thermodynamically stable polymorph(native structure) while anatase structure is identified as its metastable counterpart(non-native structure). Both computational and experimental data suggests that anatase structure is stable at lower length scale (<14nm) while its polymorphic counterpart is stable in higher length scale (>14nm)[9]. Anatase and rutile has a band gap 3.2eV and 3.0eV respectively and their band-edges are suitable for water-splitting. Anatase is generally found to be more photocatalytically active than rutile. Similarly in Fe₂O₃, it is found that they have four polymorphs. α - Fe₂O₃ is found to be thermodynamically stable bulk 'native' phase (p>50nm) while β - and ϵ - are

Though there is considerable literature on specific non-native structures, there is distinct lack of literature that gives generalized heuristics and strategies for the synthesis of non-native structures. One synthetic method is the application of high pressure if the lattice volume of the non-native structure is less than that of native structure (e.g. LaVO₄, CdSe)[12,13]. The application of pressure need not be always through external pressure. Pseudomorphic growth upon sacrificial shell template results in stabilization of core materials even in atmospheric pressure due to stress exerted by shell [14]. In this regard, we specifically investigated ZnS@CdSe@ZnS system and found CdSe transforms to non-native (RS) structure even at atmospheric pressures [14]. Similar observations have been made in non-native Fe₂O₂ polymorphs where SiO₂ template is used [10]. Among other methods, synthesis of structure is performed in high concentration of strongly bound ligands. The non-native structures are often formed in early stages of growth. If the ligands can arrest the growth of structures by binding to them, they lower the surface energy of crystals and in the process lower the total energy of the system as well as providing steric hindrance to the growth of native structure. The non-native structures of MnSe [15], CoO[16-18], MnS[19] are stabilized by these methods. To arrest the growth of non-native structures, low reaction temperature is being maintained in solution based synthesis.

Through synthesis of non-native structures of earth abundant elements, we can expand the material space of suitable materials for PEC application. The synthesis of these non-native nanostructures have several advantages like 1) surface/volume ratio 2) quantum confinement effect, and 3) enhanced electrodynamic interactions from the point of PC/PEC applications. From the view of PEC water splitting, a main prerequisite of any semiconductor material (nanoparticle and/or bulk) is to have efficient charge separation upon light excitation [20]. Upon light absorption, the formed excitons (electron-hole pair) have to be "split" and reach to the surface to facilitate respective redox reactions.

Heterojunctions: It is to be noted that the typical diffusion length of electrons/holes is less than 10 nm before they recombine with holes/electrons and migrate or diffuse. Hence, there is a need for developing new strategies for attaining effective charge carrier separation. In this context, the concept of heterojunctions has been

3) Good stability [23]. Furthermore, the interface and

interfacial strain between two phases plays a major role in

heterostructure formation. Different degrees of interfacial

strain will lead to the formation of different type of heterostructures e.g. 1) a well matched lattice parameters

of crystalline phases lead to core/shell heterostructures

formation [14] or 2) if there is overall lattice mismatch

along certain miller indices with existence of coincident

site lattices (i.e. systems with reduced symmetry compared

to symmetric core-shell structures) leads to anisotropic

heterostructures (usually called as Dimers or oligomers)

Heterostructures are classified into type-I, type-II and

introduced, in which junction formed between electron donating and accepting materials [21] with proper band alignments and will facilitate effective charge separation at the interface due to band bending.

An interface formed between regions of dissimilar materials (metals, semiconductors or insulators) is abbreviated as heterojunction and the combination of multiple heterojunctions together in a system or a device is called a heterostructure. Properly designed heterostructures typically involve modification of the electronic structure at the interface that facilitates optical absorption, charge separation, and enhances the kinetics of surface reaction [22] as schematically shown in **Figure-1A**.

Kinetics of surface reaction

Figure 1. A Schematic illustration of primary processes responsible for performance enhancement in heterostructure systems, Adapted from ref [22]; (B) charge transfer in a coupled semiconductor-semiconductor system with proper band alignments in transferring charge carriers.

elaborated in Fig. 2) based on the band alignment at the core-shell interface. The band gap of the core is narrower than band gap of shell e.g. CdSe core/ ZnS shell nanocrystals fall under type-I core-shell category and the shell

type-III configurations (schematically

material is utilized to improve the optical properties by passivation of the core [25]. In the inverse type-I system, the band gap of core is broader than the band gap of shell which permits both the charge carriers to reside in the shell e.g. ZnSe core/CdSe shell fall under this classification [26]. In type-II system, the valence and conduction band of core lies below the valence and conduction band of shell respectively or vice-versa e.g. Anatase/Rutile TiO₂, CdTe/ZnTe and CdS/ZnSe [27]. Figure 2 illustrates these configurations based on these band alignment positions that

When two materials/phases/particles are coupled, the effective driving force for electrons and holes

transport depends Type-III Type-I Type-II on their proper band E_{CB}. ECB alignments and band E_{CB} edge positions (Fig.-InAs 1B). Further, three Rutile Anatase important aspects are EvB ZnS CdSe essential in forming EVB GaSb heterostructures, which are, 1) uniform E_{VB} size of the individual J. Am. Ceram. Soc., 95 [6] 1927-1932 (2012) components, 2) J. Phys. Chem. B, 1997, 101 (46), 9463-9475 Appl. Phys. Lett, 71, (6), 11, 1997 Smooth and defect

are feasible for fast charge carrier movements.

[24].

free interfaces and Figure 2: Classification of heterostructures and catalyst design based on different band alignment positions.

51

Iso-material heterostructure

Iso-material heterostructures are formed by material of similar chemical composition e.g. anatase-rutile TiO_{γ} rutile-brookite TiO₂, brookite-anatase TiO₂, monoclinicorthorhombic WO₃ and α - β Ga₂O₃. The advantage of isomaterial heterostructures is in it having lesser interfacial defects due to better lattice match at the interface between phases, which helps to facilitate charge carrier movements apart from synergistic effect associated in some materials like TiO₂ (P25 Degussa). Due to the "intimate" co-existence of anatase and rutile phases it is observed that P25 Degussa is more effective than a system consisting of pure rutile or anatase [28]. It can be noted that the interfacial charge carrier transport in TiO, polymorphic heterojunctions can be explained in two main pathways: 1) due to lower CB minimum, rutile phase acts as a passive electron sink and captures electrons from anatase phase [29] and 2) transport of electrons from the rutile to anatase occurs via lower energy electron trapping sites of anatase phase [30]. It is worth noting that the charge carrier transport from one phase to other depends on the particle size, surface energy, localized electronic states and structural interface in the bandgap of anatase/rutile phases.

Processing of PEC electrodes and their present status

Generally photoelectrodes (metal and/or metalsemiconductor heterostructures) are fabricated through physical mixing [31], electrochemical deposition [32], non-covalent interactions [33], spin coating [34], Langmuir Blodgett [35], Doctor Blade [36] and sputtering. However, all these fabricated heterostructures are stable only under certain chemical conditions such as operating pH, temperature/potential or concentration/scan rate/ current because of the relatively weak interactions between the constituent entities with the surface; Hence, it is expected that covalently bound interfaces would enhance the stability of such heterostructures and thereby enhance the performance of the PEC water splitting. Click chemistry is a versatile tool to fabricate such metalsemiconductor heterostructures[37] and have provided stable heterostructures in the context of solar hydrogen production.

"Click" chemistry for fabrication of photoelectrodes

"Click" chemistry (usually called as copper (I)catalyzed azide–alkyne cycloaddition (CuAAC) click reaction) is a widely used tool to attach particle to particle and/or particle to substrate surface via strong covalent linkages of triazole moieties and proceeds with high yields with no by-products. It can be inferred from literature that this approach is applicable to variety of material synthesis applications such as functionalization of polymers and dendrimers [38], polysaccharides [39], DNA [40], and a variety of bulk surfaces including gold [37] and silica [41] as well as different conducting (e.g. ITO, SS, Ti) [37,42] and non-conducting (e.g. glass or polymer surfaces) [43,44].

The utilization of this approach offers a number of advantages: (1) the triazole linkage between the click moieties offers high stability, even under highly oxidizing conditions, and supports electron transfer [45]; (2) it circumvents the problem of aggregation associated with the thermal processing of nanoparticles and offers the ability to modify electrodes even at room temperature (RT); (3) scalable to large areas, and (4) flexibility and control in the formation of multilayers of differing metallicsemiconductor nanoparticles and enabling versatile heterostructure fabrication approach compared to other chemical approaches. Further, this method is applicable to any type of nanoparticle (metal, semiconductor or insulator) and any type of surface (conducting surfaces like ITO, SS, Si wafer, or non-conducting surfaces like glass and polymer matrices). We have optimized protocols for alkyne (Figure 3a) and azide (Figure 3b) functionalization of different substrates. Further, Figure 3c explains the broad applicability of click conjugation to different alkyne/ azide moiety containing particle with alternative azide/ alkyne group functionalized substrate. This approach of click reaction makes it modular and applicable to any surface or particle and has emerged as a facile and versatile approach to achieve chemical assembly of materials via covalent bonds [46]. It is to be noted that the heterostructures fabricated from this approach is active for surface electrochemistry and stable under external potentials or potentials generated because of the absorption of solar radiation. Our recent article demonstrates the wide applicability of click chemistry approach in fabrication of metal-semiconductor heterostructures. The tailor made nanostructures on different substrates (ITO, SS, Si-wafer and Ti) showed excellent stability as well as activity in enhancing the photocatalytic water splitting as well as methanol oxidation reaction schemes.

We know that the performance of any heterojunctions (oxide/oxide or metal/oxide or metal/metal) is critically dependent on their ability to achieve intimate mixing and electrical contact between different materials [37]. In general, heterojunctions can be formed via a range of physical methods such as physical mixing [47], and sequential deposition methods [48]. However, when material is in the form of nanoparticles, chemical assembly

Figure 3a: Alkyne functionalization of different conducting substrates (Si, SS, ITO, and *Ti*) and non-conducting substrate (glass)

Figure 3b: Azide functionalization of different conducting substrates (Si, SS, ITO, and Ti) and non-conducting substrate (glass)

Figure 3c: Click reaction of nanoparticle containing alkyne moiety with azide functionalized substrate and vice versa

methods are always better than physical methods and offer a highly scalable approach towards the formation of heterojunctions [49]. The heterojunctions formed between material interfaces are electronically conducting and allow facile transfer of charge carriers which will improve the performance of the operation as shown in our recent article. The covalent linkages formed between metal (Au)–semiconductor (TiO₂) heterostructures are stable enough to degrade the Rhodamine (RhB) dye effectively by utilizing the photon flux (in terms of SPR effect of gold) and heterojunctions.

"Click" chemistry of metal oxides

The usage or the potential effectiveness of CuAAC for the modification of γ -Fe₂O₃ nanoparticles with a diverse array of functional species including small molecules and polymers has been demonstrated recently [50]. Further, it is versatile and modular approach applicable to other metal oxides such as TiO₂ as demonstrated by our group [51], WO₃ [52], ZnO [53] and SiO₂ [41]; Further other semiconductors such as CdSe [54] and Si-111[55]. Recently several articles are focusing more on click chemistry of nano surfaces [56] and nanoparticle modification strategies[57].

Reactor design and fabrication

Essential rationale: PEC water splitting is multipronged research in which development of efficient photo electrode material is critical. Nevertheless the PEC device development has to go hand in hand which in turn will reduce barriers in commercializing this technology. Till now, there is no standard device and testing procedure for studying the performance of new photo electrode materials. Although, several articles [58] and reviews [59] are available on photo reactor design, focused rational reactor design which can be utilized across the full range of applications of photo catalysis/PEC in both small and large scale is scanty.

Very few groups have developed small scale PEC reactor to test their photo electrode materials and such reactors have not been optimized too. By considering the aforementioned factors a small scale PEC device has been designed and fabricated. Hence, our development and scale-up efforts have focus mainly on design that are most suitable in applications and have potential in commercial development of solar energy conversion schemes. The ensuing discussion will focus on the factors one need to consider while designing PEC water splitting device/small scale reactor.

Primary functions of the reactor

- It should hold the electrodes in an orientation that allows for photons impingement on to the electrode surface in an uniform manner.
- It should allow for pumping and distribution of the electrolyte across the electrode surface i.e. high mass transfer rate.
- It should have a separation/removal/safety mechanism for the products H₂ and O₂ as this is an explosive mixture.
- Transferring of charge carriers to counter electrodes with minimal overpotential.

Need for Design of a Photoreactor

Design of an electro/photoelectrochemical reactor with separate gas evolving chambers is a challenging task due to the complexity involved in heterogeneous catalytic splitting of water. Multiphase flow in any reactor is stochastic in nature. The physics and effects of bubble nucleation, growth and detachment will play an important role in reaction rate. It is very important to consider the bubble size and bubble hydrodynamics in photoreactor design, wherein bubble photon reflectivity and light path distance increases the overall over potential of the system. Generally, photoreactors differ significantly from normal chemical reactors based on one major aspect of physical geometry which ensures proper collection of photons effectively on to the photocatalyst, apart from operational parameters such as temperature, pressure which come under secondary importance. Several other parameters affect resistances such as ohmic drops, contact resistance and mass transfer limitations. Overall, design of a PEC reactor comprises of two parts: reactor design and photo electrode design. Most of the previous works are primarily focused on photo-electrode design rather than mechanical device design, even though both play a significant role in achieving the reasonable efficiency of solar to hydrogen conversion from water photo-oxidation.

For large scale applications, the reactor configuration should be a continuous type reactor, have the option of stacking a number of cells to intensify the process, have minimum pressure drop, high mass transfer rate and uniform distribution of light. Furthermore, the reactor should be modular enough to test different kind of photo electrode materials, configurations and biasing. Last but not least, fabrication and design should include minimum over potential losses, maximum photon absorption and high mass transfer rates. From literature reports, planar type is more efficient than other configurations and it is easier to scale up. Further, a small scale reactor should be modular enough to adopt different PE configurations in order to get the true or overall efficiency. At the end by considering all the pros and the cons, a modular photo electrochemical reactor design has been developed keeping in view of listed design principles.

Design Constraints

- Light collection/absorption by the semiconductor photoanode: maximizing photon absorption per unit volume of reactor.
- Reactor design also should be suitable to be use with focused/concentrated sunlight to intensify operation of the PEC reactor.
- High mass transfer rates, to develop the optimum electrochemical efficiency i.e. Increasing the value of limiting current density
- Separation of products to prevent back reactions in order to increase overall process efficiency. Avoid explosive mixtures of H₂ and O₂.
- Optimization of potential distribution in the cell to minimizes ohmic losses in the solution.
- Reactor materials need to be compatible with electrolyte solution and impervious to hydrogen penetration.
- Cost effective

Prototype model of a PEC reactor

Reactor design mainly depends upon the Photo electrode (PE) configuration. PE configuration should have minimum overpotential loss, low recombination rate, efficient transport of charge carriers. In order to test the photo electrode materials developed by different investigators the small scale reactor should be modular enough to adopt different PE configurations in order to get the true solar to energy efficiency and the parameters affecting the overall efficiency. The developed reactor is small scale, planar type, continuous mode, having different reaction chambers separated by a membrane. This planar model is very simple to operate, flexibility to change the electrodes and easy to scale up. The front panel of the reactor is flat which ensures maximum photons to pass through the chamber. The figures below depict the exploded view of the reactor assembly.

*Figure 4: (A) Prototype reactor model (20cm*20cm) (B) Fabricated photoreactor assembly (20cm*20cm); and fabricated photoreactor assembly (10cm*10cm) (C) front view and (D) side view*

Acknowledgement

We thank Department of Science and Technology (DST) for supporting this work through grant No. DST/TSG/SH/2011/106 and through the grant DST/TM/ SERI/2K11/79(G).

References

- 1. J.A. Turner, A realizable renewable energy future, *Science*, 285 (1999) 687.
- M. Graetzel, Photoelectrochemical cells, *Nature*, 414 (2001) 338.
- 3. X. Chen, S. Shen, L. Guo and S.S. Mao, Semiconductor-

Mechanical Design

The body structure can be made with PTFE or PVDF materials which are highly stable in both alkaline and acidic electrolyte mediums. The fabrication of square type modular construction involves 3 major parts: 1) front plate made up of quartz glass, which has optimum light transmitting properties (fixed using sealant material), 2) Nafion membrane, a high conducting proton transport barrier (placed in between two reaction chambers), 3) reaction chamber having inlet and outlet for electrolyte entry and exit. Further, the fabricated reactor can be used for both front and back ends light illumination (in case of both working and counter electrodes are photon absorbing materials).

Future outlook and conclusion

The present target of any PEC material is to achieve a current density of 10 mA/cm² upon solar light illumination. However, with present available material design, this target is yet to be achieved. To expand the choice of the materials, we have focused on exploring native/nonnative structures of materials as they provide a systematic manner for modulating the chemical coordination in the bulk, interface between two crystal phases and at the surface, which in turn will facilitate modulation of bandgap, electron-hole separation and surface electrochemistry. From practical utility of these materials, it is not enough to synthesize a material, but it is also important to attach the material to a substrate for long sustainable usage. In this context, we have suggested using 'click chemistry' to fabricate stable photoelectrodes which are found to be stable and active even under harsh conditions. Finally a prototype reactor has been designed and fabricated for scale up studies.

based photocatalytic hydrogen generation, *Chem. Rev.*, 110 (2010) 6503.

- 4. S. Linic, P. Christopher and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, *Nat. Mater.*, 10 (2011) 911.
- 5. H.A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, *Nat. Mater.*, 9 (2010) 205.
- 6. P. Christopher, H. Xin and S. Linic, Visible-lightenhanced catalytic oxidation reactions on plasmonic silver nanostructures, *Nat Chem*, 3 (2011) 467.
- Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen and F. Jiao, A selective and efficient electrocatalyst for carbon dioxide reduction, *Nature Comm.*, 5 (2014).
- 8. M. Pandey and R.G.S. Pala, Stabilization and growth of non-native nanocrystals at low and atmospheric pressures, *J. Chem. Phys.*, 136 (2012).
- 9. J.F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, *J. Mater. Chem.*, 8 (1998) 2073.
- S. Sakurai, A. Namai, K. Hashimoto and S.-i. Ohkoshi, First Observation of Phase Transformation of All Four Fe₂O₃ Phases (γ-ε-β-α-Phase), J. Am. Chem. Soc., 131 (2009) 18299.
- G. Carraro, C. Maccato, A. Gasparotto, T. Montini, S. Turner, O.I. Lebedev, V. Gombac, G. Adami, G. Van Tendeloo and D. Barreca, Enhanced Hydrogen Production by Photoreforming of Renewable Oxygenates Through Nanostructured Fe2O3 Polymorphs, *Adv. Func. Mater.*, 24 (2014) 372.
- P. Gangwar, M. Pandey, S. Sivakumar, R.G.S. Pala and G. Parthasarathy, Increased Loading of Eu3+ Ions in Monazite LaVO4 Nanocrystals via Pressure-Driven Phase Transitions, *Cryst. Growth & Des.*, 13 (2013) 2344.
- K. Jacobs, J. Wickham and A.P. Alivisatos, Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals, *J. Phys. Chem. B*, 106 (2002) 3759.
- 14. M. Pandey and R.G.S. Pala, Stabilization of Rocksalt CdSe at Atmospheric Pressures via Pseudomorphic Growth, *J. Phys. Chem. C*, 117 (2013) 7643.

- 15. I.T. Sines, R. Misra, P. Schiffer and R.E. Schaak, Colloidal Synthesis of Non-Equilibrium Wurtzite-Type MnSe, *Angew. Chem. Int. Ed.*, 49 (2010) 4638.
- A.S. Risbud, L.P. Snedeker, M.M. Elcombe, A.K. Cheetham and R. Seshadri, Wurtzite CoO, *Chem. Mater.*, 17 (2005) 834.
- K.M. Nam, J.H. Shim, D.-W. Han, H.S. Kwon, Y.-M. Kang, Y. Li, H. Song, W.S. Seo and J.T. Park, Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology, *Chem. Mater.*, 22 (2010) 4446.
- W.S. Seo, J.H. Shim, S.J. Oh, E.K. Lee, N.H. Hur and J.T. Park, Phase-and size-controlled synthesis of hexagonal and cubic CoO nanocrystals, *J. Am. Chem. Soc.*, 127 (2005) 6188.
- J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, W. Yu and Y. Qian, Metastable MnS crystallites through solvothermal synthesis, *Chem. Mater.*, 13 (2001) 2169.
- G. Weiser, Stark-effect of one-dimensional wannier excitons in polydiacetylene single crystals, *Phys. Rev. B*, 45 (1992) 14076.
- J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti and A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks, *Nature*, 376 (1995) 498.
- C.X. Kronawitter, L. Vayssieres, S.H. Shen, L.J. Guo, D.A. Wheeler, J.Z. Zhang, B.R. Antoun and S.S. Mao, A perspective on solar-driven water splitting with all-oxide heteronanostructures, *Energ. & Env. Sci.*, 4 (2011) 3889.
- X.M. Feng, G.Q. Hu and J.Q. Hu, Solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials, *Nanoscale*, 3 (2011) 2099.
- 24. K.W. Kwon and M. Shim, Gamma-Fe2O3/II-VI sulfide nanocrystal heterojunctions, J. Am. Chem. Soc., 127 (2005) 10269.
- X.N. Fei, G.Z. Jia and J. Guo, Quantum size effects on exctions properties of CdSe/ZnS core/shell quantum dots, *Optoelectronics and Advanced Materials-Rapid Communications*, 6 (2012) 679.
- X.H. Zhong, R.G. Xie, Y. Zhang, T. Basche and W. Knoll, High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals, *Chem. Mater.*, 17 (2005) 4038.
- S. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. Zavadil, W. Wallace, D. Werder and V. Klimov, Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties, J. Am. Chem. Soc., 129 (2007) 11708.
- N.T. Nolan, M.K. Seery and S.C. Pillai, Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol-Gel-Synthesized TiO2 Photocatalysts, J. Phys. Chem. C, 113 (2009) 16151.
- R.I. Bickley, T. Gonzalezcarreno, J.S. Lees, L. Palmisano and R.J.D. Tilley, A structural investigation of titanium-dioxide photocatalysts, *J. Solid State Chem.*, 92 (1991) 178.
- C.H. Deanna, G.A. Alexander, A.G. Kimberly, R. Tijana and C.T. Marion, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO 2 Using EPR, J. Phys. Chem. B, 107 (2003) 4545.

- M.-C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, *Chem. Rev.*, 104 (2004) 293.
- S. Sivakumar, K.L. Wark, J.K. Gupta, N.L. Abbott and F. Caruso, Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses, *Adv. Func. Mater.*, 19 (2009) 2260.
- 33. M.A. McLachlan, N.P. Johnson, M. Richard and D.W. McComb, Thin film photonic crystals: synthesis and characterisation, *J. Mater. Chem.*, 14 (2004) 144.
- M. Grzelczak, J. Vermant, E.M. Furst and L.M. Liz-MarzÃ_in, Directed self-assembly of nanoparticles, *Acs Nano*, 4 (2010) 3591.
- B.A. Grzybowski, C.E. Wilmer, J. Kim, K.P. Browne and K.J.M. Bishop, Self-assembly: from crystals to cells, *Soft Matter*, 5 (2009) 1110.
- M. Fialkowski, K.J.M. Bishop, R. Klajn, S.K. Smoukov, C.J. Campbell and B.A. Grzybowski, Principles and implementations of dissipative (dynamic) self-assembly, *J. Phys. Chem. B*, 110 (2006) 2482.
- 37. A.P. Upadhyay, D.K. Behara, G.P. Sharma, A. Bajpai, N. Sharac, R. Ragan, R.G.S. Pala and S. Sivakumar, Generic Process for Highly Stable Metallic Nanoparticle-Semiconductor Heterostructures via Click Chemistry for Electro/Photocatalytic Applications, ACS appl. mater. & interfac., 5 (2013) 9554.
- C.J. Hawker and K.L. Wooley, The convergence of synthetic organic and polymer chemistries, *Science*, 309 (2005) 1200.
- T. Liebert, C. HA¤nsch and T. Heinze, Click chemistry with polysaccharides, *Macromolecular rapid communications*, 27 (2006) 208.
- 40. T.S. Seo, Z. Li, H. Ruparel and J. Ju, Click chemistry to construct fluorescent oligonucleotides for DNA sequencing, *J. Org. Chem.*, 68 (2003) 609.
- T. Lummerstorfer and H. Hoffmann, Click chemistry on surfaces: 1, 3-dipolar cycloaddition reactions of azideterminated monolayers on silica, *J. Phys. Chem. B*, 108 (2004) 3963.
- M.A. Watson, J.I. Lyskawa, C.d. Zobrist, D. Fournier, M. Jimenez, M. Traisnel, L.o. Gengembre and P. Woisel, " Clickable" Titanium Surface Platform, *Langmuir*, 26 (2010) 15920.
- X.-L. Sun, C.L. Stabler, C.S. Cazalis and E.L. Chaikof, Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions, *Bioconjugate Chem.*, 17 (2006) 52.
- 44. G.K. Such, J.F. Quinn, A. Quinn, E. Tjipto and F. Caruso, Assembly of ultrathin polymer multilayer films by click chemistry, J. Am. Chem. Soc., 128 (2006) 9318.
- 45. N.K. Devaraj, R.A. Decreau, W. Ebina, J.P. Collman and C.E.D. Chidsey, Rate of interfacial electron transfer through the 1, 2, 3-triazole linkage, *J. Phys. Chem. B*, 110 (2006) 15955.
- J.P. Collman, N.K. Devaraj and C.E.D. Chidsey, "Clicking" functionality onto electrode surfaces, *Langmuir*, 20 (2004) 1051.

- T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang and J. Yao, Photochromism of WO3 colloids combined with TiO2 nanoparticles, *J. Phys. Chem. B*, 106 (2002) 12670.
- J. Lu, K.M. Kosuda, R.P. Van Duyne and P.C. Stair, Surface Acidity and Properties of TiO2/SiO2 Catalysts Prepared by Atomic Layer Deposition: UV-visible Diffuse Reflectance, DRIFTS, and Visible Raman Spectroscopy Studies, *J. Phys. Chem. C*, 113 (2009) 12412.
- I.n. Robel, V. Subramanian, M. Kuno and P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, J. Am. Chem. Soc., 128 (2006) 2385.
- M.A. White, J.A. Johnson, J.T. Koberstein and N.J. Turro, Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry, J. Am. Chem. Soc., 128 (2006) 11356.
- 51. S. Shah, M.C. Benson, L.M. Bishop, A.M. Huhn, R.E. Ruther, J.C. Yeager, Y. Tan, K.M. Louis and R.J. Hamers, Chemically assembled heterojunctions of SnO2 nanorods with TiO2 nanoparticles via "click†chemistry, J. Mater. Chem., 22 (2012) 11561.
- 52. A.C. Cardiel, M.C. Benson, L.M. Bishop, K.M. Louis, J.C. Yeager, Y. Tan and R.J. Hamers, Chemically Directed Assembly of Photoactive Metal Oxide Nanoparticle Heterojunctions via the Copper-Catalyzed Azide– Alkyne Cycloaddition "Click†Reaction, ACS Nano, 6 (2012) 310.

- 53. L.M. Bishop, J.C. Yeager, X. Chen, J.N. Wheeler, M.D. Torelli, M.C. Benson, S.D. Burke, J.A. Pedersen and R.J. Hamers, A citric acid-derived ligand for modular functionalization of metal oxide surfaces via "click†chemistry, *Langmuir*, 28 (2012) 1322.
- 54. W.H. Binder, R. Sachsenhofer, C.J. Straif and R. Zirbs, Surface-modified nanoparticles via thermal and Cu (I)mediated "click" chemistry: generation of luminescent CdSe nanoparticles with polar ligands guiding supramolecular recognition, *J. Mater. Chem.*, 17 (2007) 2125.
- 55. R.D. Rohde, H.D. Agnew, W.-S. Yeo, R.C. Bailey and J.R. Heath, A non-oxidative approach toward chemically and electrochemically functionalizing Si (111), *J. Am. Chem. Soc.*, 128 (2006) 9518.
- 56. H. He and C. Gao, Click chemistry on nano-surfaces, *Curr. Org. Chem.*, 15 (2011) 3667.
- 57. N. Li and W.H. Binder, Click-chemistry for nanoparticlemodification, J. Mater. Chem., 21 (2011) 16717.
- R.E. Rocheleau, E.L. Miller and A. Misra, High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes, *Energy & Fuels*, 12 (1998) 3.
- 59. Z. Xing, X. Zong, J. Pan and L. Wang, On the engineering part of solar hydrogen production from water splitting: photoreactor design, *Chem. Eng. Sci.*, 104 (2013) 125.

Dilip Kumar Behara has done Masters in Chemical Engineering and currently pursuing Ph.D in the department of chemical engineering, Indian Institute of Technology (IIT) at Kanpur under guidance of Dr Raj Ganesh S Pala and Dr Sri Sivakumar of Chemical Engineering Department, IIT Kanpur. His areas of research include "Electrochemistry, Nanoscience & Technology, Material Science and Engineering and Multi-phase reactor design". Presently he is working on "Solar Hydrogen Generation" project funded by Department of Science and Technology (DST), India as part of his PhD thesis entitled: "Photoelectrochemical (PEC) water splitting via metal-oxide heterostructures".
Sulay Saha has done Masters in Chemical Engineering at Indian Institute of Technology, Kharagpur and currently pursuing PhD in Chemical Engineering department in Indian Institute of Technology, Kanpur under the guidance of Dr Raj Ganesh S Pala and Dr Sri Sivakumar. His areas of research include electrochemical energy conversion, computational material design and nanoscience & technology.
Babu Radhakrishnan received his Masters in Thermal engineering at Government College of Technology, Coimbatore in 2011. He is currently pursuing a PhD at Indian Institute of Technology, Kanpur. His research interests include design and multi-phase flow analysis of electrochemical systems using optical visualization techniques.
Malay Kumar Das is an assistant professor in the department of mechanical engineering at the Indian Institute of Technology Kanpur. His present research interests include electrochemical energy conversion, multiphase transport phenomena and bio-fluid mechanics.

SMC Bulletin Vol. 5 (No. 2) August 2014

Sri Sivakumar is an associate professor at the department of chemical engineering, Indian Institute of Technology at Kanpur. His research focuses on the development of various nanomaterials for various applications in particular drug delivery, bio-imaging, solar hydrogen generation, catalytic reactions, and solid state lightings. The research also focuses on growth and stabilization mechanism of nanomaterials whose understanding is essential in designing materials with multifunctional properties.

Raj Ganesh S. Pala is an associate professor at the department of chemical engineering, Indian Institute of Technology at Kanpur. His long-term research interests broadly include chemical and electrochemical approaches for conversion of solar energy. Currently, the primary research focus is on the generation of hydrogen using photoelectrochemical systems. His research group focuses on the elucidation of concepts that aid in designing functional materials, an on synthesis of functional materials and their integration into reactors/devices. Elucidation of these underlying principles often involves a semi-quantitative description of phenomena that span a wide range of length and time scales. In this context, analysis is made using a wide variety of computational and theoretical tools like quantum chemical density functional theory, molecular dynamics, lattice based Monte Carlo methods and continuum transport equations. These studies are closely work coupled with experiments performed in the group as a combined experimental and theoretical analysis is often imperative in addressing systems as complex as a typical industrial electrocatalysts.

Recent Trends in Material Development for Photoelectrochemical route of Solar Hydrogen Production

Sahab Dass, Vibha Rani Satsangi and Rohit Shrivastav Dayalbagh Educational Institute, Dayalbagh, Agra

1. Introduction

Renewable and clean natural resources includes solar, wind, geothermal, hydro and biomass. Our energy demand mainly relies on the energy input from fossil fuels, but the fact is, this source of energy is finite and also contributing towards the climate change because of associated release of various harmful emissions into the atmosphere which in turn results in adverse and significant health, climate and environmental impacts. Solar energy is a perpetual energy source as it is vast and inexhaustible source and does not contribute to environmental issues. There is an urgent need to understand that world needs to retrofit its current energy generation source with the new alternative energy source which is inexhaustible and therefore provides long-term energy security with zero emissions.

Hydrogen is emerging as an *emission free-alternative* energy carrier. It has immense potential to fulfill our increasing energy demands. The High amount of energy is stored within the H-H bond and 1 kg of hydrogen produces energy equivalent to 2.7 kg of gasoline. On combustion, it produces H_2O with release of high energy[1][36]. Solar energy induced hydrogen generation by splitting of water is an important area of research and world over researchers are trying to attain breakthrough in this technology.

The work in the area of H_2 generation by water splitting was pioneered by *Fujishima* and *Honda* in 1972. But the research in this area to develop an efficient semiconductor device to split water for H_2 generation is still progressive. Various modification techniques have been adopted to enhance the response of semiconductors in terms of stability and efficiency.

This communication attempts to discuss the research being pursued at Dayalbagh Educational Institute with special reference to the modifications being attempted to improve the efficiency of reaction.

2. Photoelectrochemical Water Splitting Method for Hydrogen Generation

PEC technology for splitting of water into hydrogen and oxygen by the direct use of sunlight is an ideal and promising method for hydrogen production because it uses solar energy and water both of which are renewable and on combustion of H_{γ} , water is obtained as the byproduct. This process involves solar energy collection and electrolysis of water in a single photocell. When in an aqueous electrolyte, semiconductor with the right set of properties is immersed and irradiated with sunlight, the photon energy is converted to electrical energy, which then gets further converted into chemical energy (water is broken into hydrogen and oxygen). Thus intermittent solar energy gets converted into an inherently more storable form of energy, that of chemical bonds of H_2 .

The photoelectrochemical cell has two electrodes mainly, a semiconductor (possessing either p-or n-type conductivity) as working electrode and platinum(Pt) as counter electrode. However in most measurements reference electrode is also employed to investigate half reactions in the PEC cell. When semiconductor is n-type it behaves as photoanode and oxygen is evolved, on the contrary when semiconductor is p-type it behaves as photocathode and H₂ is evolved on it [2].

The process is also known as *artificial photosynthesis* as the light-driven splitting of water takes place into H₂ and O₂. This process is thermodynamically an uphill reaction with positive $\Delta G \approx 237.2 \text{ kJ/mol}$ and negative $\Delta E^\circ = -1.23 \text{ V}$

 $2H_2O \rightarrow O_2 + 2H_2$ (Light)

In photoelectrochemical (PEC) cell oxidation and reduction half-cell reactions takes place at two different electrodes separately, and for the reaction to proceed 1.23 V must be provided externally.

Oxidation:

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ E° = 1.23 V vs. SHE

Reduction:

 $2H^+ + 2e^- \rightarrow H_2$ E° = 0.00 V vs. SHE

Overall:

$$2H_2O \rightarrow O_2 + 2H_2$$

 $\Delta E^\circ = -1.23 V$

But energy losses (- 0.8 eV) associated with the recombination losses of the photogenerated charge carriers, resistance of the electrodes and electrical connections and voltage losses at the contacts etc., voltage of 1.6-2.0 eV is needed for spontaneous water splitting.

The illuminating light should have band gap equal or larger than band gap (E_g) of the semiconductor which results in generation of electron-hole pairs. In n-type semiconductor electrode, at semiconductor surface holes react with water molecules resulting into O_2 formation whereas electrons travel through substrate and then to external circuit and are transported to the counter electrode where they reduce H⁺ into H₂. On the contrary, p-type semiconductor electrode produces H₂ and O₂ at semiconductor electrode and at counter electrode respectively. The mechanism of PEC water splitting can be summarized as:

First the absorption of light near the surface of the semiconductor creates electron-hole pairs. Then holes (minority carriers) drift to the surface of the semiconductor (the photo anode) where they react with water to produce oxygen.

 $2h^+ + H_2O \rightarrow \frac{1}{2}O_2(g) + 2H^+$

Electrons (majority carriers) are conducted to a metal electrode (typically Pt) where they combine with H^+ ions in the electrolyte solution to make H_2

$$2e^{-} + 2H^{+} \rightarrow H_{2}(g)$$

Transport of H⁺ from the anode to the cathode through the electrolyte completes the electrochemical circuit. The overall reaction:

 $2h^+H_2O \rightarrow H_2(g) + \frac{1}{2}O_2(g)$

3. Semiconductor Electrode: Heart of PEC System

Photoelectrochemical hydrogen production cell performance depends upon the properties of the semiconductor. Semiconductor being photoactive absorbs light near its surface and generates electron-hole pairs. It is the governing factor for controlling efficiency of the system based on the following issues:

1. Optimum optical function required for maximal absorption of solar energy

Band gap of material should lie between 1.6 -2.0 eV (including thermodynamic and overpotential losses). The material should show absorption in visible light as UV portion is just the 4% of the total solar spectrum [3].

2. Corrosion resistance and long-term stability in aqueous electrolyte

The stability limits the usefulness of many photo-active materials as non-oxide semiconductors, such as Si, GaAs, GaP, CdS, etc., prevents electron transfer across the semiconductor/electrolyte interface eitherby their dissolution or forming a thin oxide film. Apart from this all metal oxide photo-anodes are thermodynamically unstable, as the photo-generated holes oxidises the semiconductor [4].

3. Band edges of semiconductor must straddle H₂O redox potentials

For p- type photocathode- conduction band minimum (CBM) should be higher (more negative in potential) than the water reduction potential (H^+/H_2) likewise for n-type photoanode valence band maximum (VBM), lower (more positive in potential) than the water oxidation potential (O_2/H_2O) [5].

4. Life time of charge carriers should be large

The light absorption in space charge region and distance travelled by electron and holes (called as diffusion length) before recombination in semiconductor contribute to photoresponse. This diffusion length should be comparable or larger than thickness of the film which increases the lifetime of charge carriers. The photogenerated charge carriers should be separated before the recombination [2].

4. Requirements to Make PEC Technology Commercially Viable

Efficiency of 12.4% with p-/n-GaAs photoanode and aGaInP₂ photocathode and over 18% for a multijunction cell have been achieved but these systems don't perform well as they undergo photocorrosion [6].

To generate H_2 at commercial level using photoelectrochemical water splitting technology, the system should achieve the following goals [7].

- ✓ Durability > 2000h
- \checkmark Low cost of manufacturing and ease of maintenance
- ✓ Conversion efficiency, solar to hydrogen (STH) > 10%
- ✓ Current Density $(J_{ph}) = 10-15 \text{ mA/cm}^2$

The scientific communities world over is searching to develop a semiconductor with all above desired characteristics but this is still an elusive goal to get an efficient and stable material.

High band gap materials show poor harvesting and absorb in UV but show high stability in aqueous electrolyte, e.g.: $TiO_{2'}WO_{3'}$, $SrTiO_{3'}BaTiO_{3'}SnO_{2'}ZnO$ while low band gap materials are good harvesters but show poor stability in aqueous electrolyte, e.g.: Si, GaAs, InP, CdTe, CdSe, CuO. Optimal band gap semiconductor is Cu₂O which absorb in visible light but show photocorrosion. Fe₂O₃ is an intermediate band gap semiconductor material which absorbs the visible light but offers redox level mismatch,

low mobility of holes and trapping of electronsby oxygendeficient iron sites [2].

5. Modification Strategies Adopted for Improving Material Performance

The group at DEI, Agra is focusing on various emerging areas in field of PEC water splitting for H₂ generation to develop an efficient and stable semiconductor by various technologies. The extensive studies have been performed to get understanding on the effect of various modifications. All the reported work have been justified and supported by various characterization techniques such as XRD (x-ray diffractometer), UV-Visible spectroscopy, SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy), TEM (Tunneling Electron Microscopy), EDX (Energy Dispersive X-ray Spectroscopy), Raman, XPS (X-ray Photoelectron Spectroscopy), Mott-Schottky analysis, I-V (Current-Voltage) characterization, efficiency measurement with ABPE (Applied Bias to Current Conversion Efficiency) and IPCE (Incident Photon To Current Conversion Efficiency).

Various modification strategies have been adopted to improve the material performance by various researchers. Brief description of the modifications being attempted by the group at DEI, Dayalbagh, Agra are summarized below.

Doping

Doping is the process of introducing impurities into the material to modify its electrical and optical properties. This method is useful in shifting the absorption of wide band gap material towards visible region. Doping results in reduced/minimal electron-hole recombination.

Upadhyay et al(2011 & 2014) studied Ag doped Cu₂O and Fe doped BaTiO₃ and computational results obtained through first-principles Density Functional Theory were

validated by experimental results.

The results obtained in various study for maximum photoresponse giving material are given below:

Bilayered System

Bilayered system is one of the best strategy to achieve good performing material in terms of PEC response. The system combines properties of two semiconductors (onewith a wide band gap and other with a small/mid bandgap). For small band gap semiconductor to sensitize the large band gap semiconductor through efficient electron or hole injection by visible light absorption both should have proper positioning of conduction and valence bands. Transfer of electrons enhance charge separation and reduces recombination by forming a potential gradientat the interface. The bilayered system covers broad visible spectrum and thereby facilitates enhanced photocurrent and improved photoconversion efficiency.

The heterojunction of SrTiO₃/Cu₂O heterojunction systems was studied by **Sharma et al (2014)**. The variation adopted was varying thickness of Cu₂O over SrTiO₃ and the photoresponse was 34 times higher than pristine SrTiO₃. Likewise **Surbhi et al (2013)** investigated the CuO/SrTiO₃ system and photoresponse was eight times higher than that for CuO and 30 times higher than that for pristine SrTiO₃. Improved photoresponse was attributed to improved conductivity and separation of the photogenerated charge carriers at the interface and higher value of flatband potential.

The summary of the various systems investigated is given below:

Swift Heavy Ion Irradiation

Swift heavy ions (SHI) create variety of defect states in the material. The energetic ions interact with the material

Systems Investigated	Method of preparation	Current Obtained (mA/cm ²)	Applied Bias (V/SCE)
1 at. % Ag dopedCu ₂ O [8]	Spray Pyrolysis	2.34	0.80
1.0 at% Cd doped $TiO_2[9]$	Sol-Gel	0.8	0.8
1 at% Cu doped ZnO [10]	Sol-Gel	0.7	0
0.2 at% Fe doped TiO ₂ [11]	Sol-Gel	0.92	0
2 at% Fe doped BaTiO ₃ [12]	Polymeric Precursor Route	2.55	0.5
0.02 M Ti doped Fe ₂ O ₃ [13]	Spray Pyrolysis	1.98	0.5
5 at. %Zn doped $Fe_2O_3[14]$	Spray Pyrolysis	0.64	0.7
2 at. % Zr doped $Fe_2O_3[15]$	Electrodeposition	2.1	0.6
1 at. % Ag doped ZnO[16]	Electrodeposition	0.81	0
5 at % Ni doped Cr-ZnO[17]	Sol-gel method	1.18	0.5

Systems Investigated	Method of preparation	Current Obtained (mA/cm ²)	Applied Bias (V/SCE)
SrTiO ₃ /Cu ₂ O [18]	Sol-gel & Spray Pyrolysis	2.44	0.95
CuO/SrTiO ₃ [19]	Sol-gel	1.85	0.90
$Fe-TiO_2/Zn-Fe_2O_3$ [20]	Sol-gel & Spray Pyrolysis	1.65	0.90
α-Fe ₂ O3/Cu ₂ O [21]	Spray Pyrolysis	0.32	0.8

by losing energy and therefore modify the material properties. Depending upon ion energy, fluence and ion species these energetic beams can induce structural and morphological changes in the form of grain fragmentation or defects. Such modification alters the properties such as band gap, resistance and structural defects, which are expected to modify the photoelectrochemical response of the material. Our group has investigated various materials by irradiating ions at various fluences by different ions at the Inter University Accelarator Centre (IUAC, New Delhi). The results of reported work are summarized here as:

The increased response of two to ten folds in the entire study was attributed to the lower resistivity, maximum flatband potential, improved optical absorption capability, increased roughness, and decrease in the average grain diameter for the material giving highest photoelectrochemical response.

Surface Modification

The group has worked to modify the surface by decorating it with Zn dots on Fe_2O_3 surface. Zn dots were deposited using thermal evaporation technique. The optimum size of Zn dots of around 23 nm showed best photoresponse with photocurrent density of 1.28 mA/cm²at 0.7V/SCE [32]. The surface sensitization by CdSe quantum dotson alpha-Fe₂O₃ deposited by electrodeposition showed photocurrent of 1.14 mA/cm² at 0.8V/SCE [33] and 0.55 mA/cm² for nanoporous Fe₂O₃ deposited by spray pyrolysis [34].

The work is also understudy by decorating the surface with plasmons with noble metal nanoparticles. The surface etching studies using various acids has also been performed to understand the altered photoresponse of the material.

Systems Investigated	Method of preparation	Ion/ Energy/ Fluence	Current Obtained (mA/cm ²)	Applied Bias (V/SCE)
2% Cr- Fe ₂ O ₃ [22]	Spray Pyrolysis	170MeVAu ¹³⁺ 10 ¹² ions/cm ²	2.5	0.95
Fe ₂ O ₃ [23]	Spray Pyrolysis	120MeVAg ⁹⁺ 10 ¹³ ions/cm ²	0.32	0.95
Fe ₂ O ₃ [24]	Spray Pyrolysis	100MeVSi ⁷⁺ 2 x 10 ¹³ ions/cm ²	0.36	0.95
Fe ₂ O ₃ [25]	Electrodeposition	100 MeV Si ⁸⁺ 5x10 ¹² ions/cm ²	3.0	0.75
CuO [26]	Spray Pyrolysis	170 MeVAu ¹³⁺ 10 ¹³ ions/cm ²	1.04	0.3
BaTiO ₃ [27]	Sol-Gel	100 MeVSi ⁸⁺ 5 x 10 ¹¹ ions/cm ²	0.7	0.4
BaTiO ₃ [28]	Sol-Gel	120 MeVAg ⁹⁺ 10 ¹¹ ions/cm ²	1.78	0.4
SrTiO ₃ [29]	Sol-Gel	120 MeVAg ⁹⁺ 3x10 ¹² ions/cm ²	0.16	0
TiO2 [30]	Sol-Gel	120 MeVAg ⁹⁺ 5x10 ¹¹ ions/cm ²	0.76	0
ZnO [31]	Sol-Gel	120 MeVAg ⁹⁺ 3x10 ¹² ions/cm ²	0.0011	0
Composite System

Iron oxide photoanodes were modified by graphene nanoplates (Fe₂O₃-GNP) which acted as conducting scaffolds in photoelectrochemical (PEC) cell for hydrogen generation. The enhanced photoresponse was obtained which may be due to the increased charge transfer at junction of semiconductor/electrolyte and red - shift in the UV-vis spectra of the composite. Photocurrent density of 2.5 mA/cm² at 0.75 V/SCE was observed for the 0.2 wt% GNP modified alpha-Fe₂O₃ [35].

Bioinspired Materials

Taking inspiration from natural photosynthesis, PEC can be called as "*Artificial Photosynthesis*" where the photons absorbed from solar spectrum by a semiconductor material is used to split water molecule to produce hydrogen and oxygen as a by product. Semiconductor material behaves like an *artificial leaf* where the whole reaction process takes place.

The group at DEI is also developing biologically inspired methods and materials that can be presented as new tools for the design of novel photoelectrochemically active materials. Bioinspired materials are the novel materials which mimic the functional trick (minimal structure required for a catalyst to achieve the biological function) of an active site which are responsible for carrying out oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Such molecules under study include Phycocyanins, Hydrogenase mimic etc.

6. Conclusions

Various group of researchers both at national and international level are working in this exciting area of PEC splitting of water for hydrogen generation with the objective to modify and develop the material system which can split water efficiently and economically. While a lot has been learnt and done in the past more than 3 decades success appears to be at some distance which all of us hope to achieve shortly with hard sustained work.

References

- R. M. Navarro, M. A. Pen, and J. L. G. Fierro, *Chem. Rev.*, 107 (2007), 3952-3991.
- S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V. R. Satsangi, R. Shrivastav, S. Dass, *Int. J. Hydrogen Energy*, 37 (2012), 18713-30.
- 3. L. J. Minggu, W. R. W. Daud, M. B. Kassim, Int. J. Hydrogen Energy, , 35 (2010), 5233-5244.
- 4. R. Memming, Wiley-VCH Verlag GmbH, Weinheim, Germany, D-69469 (2000).
- 5. S. Chen and L. Wang, Chem. Mater., 24 (2012), 3659-3666.

- 6. F. E. Osterloh, Chem. Soc. Rev., 42 (2013), 2294-2320
- 7. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, *Int. J. of Hydrogen* Energy, 27 (2002), 991 – 1022.
- S. Upadhyay, D. Sharma, N. Singh, V. R. Satsangi, R. Shrivastav, U. V. Waghmare, S. Dass, J Mater Sci, , 49 (2014), 868–876
- S. Kumari, Y. S. Chaudhary, S. A. Agnihotry, C. Tripathi, A. Verma, D. Chauhan, R. Shrivastav, S. Dass, V. R. Satsangi, Int. J. Hydrogen Energy, 32 (2007), 1299 – 1302
- V. Sharma, P. Kumar, J. Shrivastava, A. Solanki, V. R. Satsangi, S. Dass, R. Shrivastav, J. Mater Sci, 4 (2011), 63792–3801
- A. P. Singh, S. Kumari, R. Shrivastav, S. Dass, V. R. Satsangi, Int. J. Hydrogen Energy, 33 (2008), 5363 – 5368
- S. Upadhyay, J. Shrivastava, A. Solanki, S. Choudhary, V. Sharma, P. Kumar, N. Singh, V R. Satsangi, R Shrivastav, U V. Waghmare, S Dass, J. Phys. Chem. C, 115 (2011), 24373– 24380
- S. Kumari, A. P. Singh, Sonal, D. Deva, R. Shrivastav, S. Dass, V. R. Satsangi, Int. J. Hydrogen Energy, 35 (2010), 3985 3990
- 14. S. Kumari, C. Tripathi, A. P. Singh, D. Chauhan, R. Shrivastav, S. Dass, V. R. Satsangi, *CURRENT SCIENCE*, **2006**, 91(8)
- P. Kumar, P. Sharma, R. Shrivastav, S. Dass, V. R. Satsangi, Int. J. Hydrogen Energy, 36 (2011), 2777-2784
- N. Singh, S. Choudhary, S. Upadhyay, V. R. Satsangi, S Dass, R. Shrivastav, J Solid State Electrochem, DOI 10.1007/ s10008-013-2285-y
- V. Sharma , P. Kumar, J. Shrivastava , A. Solanki, V.R. Satsangi, S. Dass , R. Shrivastav, *Int. J. Hydrogen Energy*, 36 (2011), 4280-4290
- D. Sharma, S. Upadhayy, S. Choudhary, V. R. Satsangi, R. Shrivastav, S. Dass Int. J. Materials, Mechanics and Manufacturing, 2014, 2(1).
- S. Choudhary, A. Solanki, S. Upadhyay, N. Singh, V. R. Satsangi, R. Shrivastav, S. Dass, J Solid State Electrochem, 17 (2013), 2531–2538
- D. Sharma, A. Verma, V. R. Satsangi, R. Shrivastav, S. Dass, Int. J. Hydrogen Energy, 39 (2011), 4189-4197.
- P. Sharma, P. Kumar, A. Solanki, R. Shrivastav, S. Dass, V. R. Satsangi, J Solid State Electrochem, 16 (2012), 1305–1312.
- Y. S. Chaudhary, S. A. Khan, C. Tripathi, R. Shrivastav, V. R.Satsangi, S. Dass, Nucl. Instr. and Meth. B, 244 (2006), 128-131.
- A. P. Singh, S. Kumari, R. Shrivastav, S. Dass, V. R. Satsangi, J. Phys. D: Applied Physics, 42 (2009), 085303.
- 24. A. P. Singh, A. Tripathi, R. Shrivastav, S. Dass, V. R.Satsangi, *Proc. of SPIE*, 7044 (2008), 70440H-1.
- P. Kumar, P. Sharma, A. Solanki, A. Tripathi, D. Deva, R. Shrivastav, S. Dass, V. R.Satsangi, *Int. J. Hydrogen Energy*, 4 (2012), 3626-3632.
- Y.S. Chaudhary, S. A. Khan, R. Shrivastav, V. R. Satsangi, S. Prakash, D.K. Avasthi, S. Dass, *Nuc. Inst. and Methods in Physics Res. B*, 225 (2004), 291–296.
- 27. A. Solanki, S. Choudhary, V. R. Satsangi, R. Shrivastav, S. Dass, J. of Alloys and Compounds, 561 (2013), 114–120.

- A. Solanki, J. Shrivastava, S. Upadhyay, S. Choudhary, V. Sharma, P. Kumar, Praveen Kumar, S. Ehrman, V.R. Satsangi, R. Shrivastav, S. Dass, *Current Applied Physics*,13 (2013), 344-350.
- A. Solanki, J. Shrivastava, S. Upadhyay, V. Sharma, P. Kumar, Praveen Kumar, K. Gaskell, V.R. Satsangi, R. Shrivastav, S. Dass, Int. J. Hydrogen Energy, 36 (2011), 5236-5245
- A. P. Singh, S. Kumari, A.Tripathi, F. Singh, K. Gaskell, J. Shrivastav, S. Dass, S.H. Ehrman, V.R. Satsangi, J. of Phys. Chem. C, 114 (2010), 622–626.
- M. Gupta, J. Shrivastava, V. Sharma, A. Solanki, A. P. Singh, V.R. Satsangi, S. Dass, R. Shrivastav, Advanced Materials

Research, 67 (2009), 95-102

- S. Kumari, A. P. Singh, C. Tripathi, D. Chauhan, S. Dass, R. Shrivastav, V. Gupta, K. Sreenivas, V. R. Satsangi, 32 (2007), 3110.
- A. Ikram, S. Sahai, S. Rai, S. Dass, R. Shrivastav, V. R. Satsangi, J. Power Sources, 267 (2014), 664-672
- 34. S. Sahai , A. Ikram, S. Rai, S. Dass, R. Shrivastav, V. R. Satsangi, *Int. J. Hydrogen Energy*, 39 (2014), 11860-11866.
- 35. S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, V. R. Satsangi, *RSC Adv.*, 4 (2014), 17671
- 36. Y. Li and J. Z. Zhang, Laser Photonics, 4(2010), 517–528.

List of Life Members

Memb.	Name	Affiliation	E-mail
No.			
1	S. K. Kulshreshtha	Ex DAE - Mumbai	kulshres@gmail.com
2	P. R. Vasudeva Rao	IGCAR - Kalpakkam	prvasudeva.rao@gmail.com
3	V. Venugopal	BARC - Mumbai	vvgopal@barc.gov.in
4	T. Mukherjee	BARC - Mumbai	tulsi.mukherjee@gmail.com
5	D. Das	BARC - Mumbai	dasd@barc.gov.in
6	S.R. Bharadwaj	BARC - Mumbai	shyamala@barc.gov.in
7	P.V. Ravindran	BARC - Mumbai	ravipv@barc.gov.in
8	C.G.S. Pillai	BARC - Mumbai	cgspil@barc.gov.in
9	Avesh Kumar Tyagi	BARC - Mumbai	aktyagi@barc.gov.in
10	R. K. Vatsa	BARC - Mumbai	rkvatsa@yahoo.com
11	S.K. Mukerjee	BARC - Mumbai	smukerji@barc.gov.in
12	A.U. Bhanu	BARC - Mumbai	aubhanu@barc.gov.in
13	Anshu Singhal	BARC - Mumbai	anshus@barc.gov.in
14	Betty. C.A.	BARC - Mumbai	bettyca@barc.gov.in
15	S.J. Patwe	BARC - Mumbai	sjpatwe@barc.gov.in
16	Sipra Choudhury	BARC - Mumbai	sipra@barc.gov.in
17	B.N. Wani	BARC - Mumbai	bnwani@rediffmail.com
18	R. Sasikala	BARC - Mumbai	sasikala@barc.gov.in
19	Neelam Goyal	BARC - Mumbai	neelam@barc.gov.in
20	A. K. Tripathi	BARC - Mumbai	catal@barc.gov.in
21	A. Venkataraman	Gulbarga University, Gulbarga	raman_chem@rediffmail. com
22	Alexander V. Vaidvan	St. Stephen's College, Kerala	rrsnc@yahoo.com
23	Chiraniih Maiumder	BARC - Mumbai	chimaiu@harc.gov.in
24	Gunian Verma	BARC - Mumbai	gunianv@barc.gov.in
25	Hemlata Bagla	K C. College - Mumbai	hemahaqla@qmail.com
26	K Ananthasiyan	IGCAR Kalnakkam	asivan@igcar.gov.in
20	Mainak Rov	BABC - Mumbai	mainak73@vahoo.com
28	Manidina Rasu	BARC - Mumbai	deena@barc.gov.in
20	PA Hassan	BARC - Mumbai	hassan@harc.gov.in
30	Pramod Sharma	BARC - Mumbai	nramod@barc.gov.in
31	R Ganguly	BARC - Mumbai	raiibg@barc.gov.in
32	R. Raveendran	S.N. College, Kollam, Kerala	rrsnc@yahoo.com
33	R S Ninnathouiam	BARC - Mumbai	rsn@barc.gov.in
34	Raishree B Jotania	Guirat University-	rbiotania@gmail.com
25	Dama Anomula	Ahmedabad	
30 30	S N Achony	BARC Mumbel	arenu@barc.gov.in
30 27	S. N. ACHARY		sacilary@bare.goV.IN
<i>პ /</i>	Sandeep Nigam		singarn@barc.gov.in
<u>ა</u> შ	Salluip Dey		usanuip@parc.gov.in
39	ənamıma Hussain	University - Dhanbad	snamiman i @yahoo.com
40	Shilpa N. Sawant	BARC - Mumbai	stawde@barc.gov.in
41	Shiva Saran Das	Gorakhpur University, Gorakhpur	ssdas2002@rediffmail.com
42	Shivram S. Garje	University of Mumbai, Mumbai	ssgarje@chem.mu.ac.in
43	Swapan K. Ghosh	BARC - Mumbai	skghosh@barc.gov.in
44	V. Ganesan	IGCAR, Kalpakkam	ganesh@igcar.gov.in
45	V. Sudarsan	BARC - Mumbai	vsudar@barc.gov.in
46	Y. P. Naik	BARC - Mumbai	yeshnaik@vsnl.com
47	B. P. Mandal	BARC - Mumbai	bpmandal@barc.gov.in
48	Deepak Sahoo	BARC - Mumbai	deepak_chembarc@yahoo. co.in
49	Dheeraj Jain	BARC - Mumbai	jaind@barc.gov.in
	-	1	· - ·

Memb. No.	Name	Affiliation	E-mail
50	G. Kedarnath	BARC - Mumbai	gkedarnath@gmail.com
51	K. Bhattacharya	BARC - Mumbai	kbarctsv@yahoo.co.in
52	Manoj Mohapatra	BARC - Mumbai	manojm@barc.gov.in
53	P.K. Wattal	BARC - Mumbai	pk.wattal@gmail.com
54	R. Manimaran	BARC - Mumbai	maranswamy@rediffmail. com
55	R.K. Bajpai	BARC - Mumbai	rkbajpai1@yahoo.com
56	S. Vana Varamban	IGCAR, Kalpakkam	varam@igcar.gov.in
57	Sathi R. Nair	ECMS - Navi Mumbai	sathi_61@yahoo.co.in
58	V.S. Tripathi	BARC - Mumbai	vst_apcd@barc.gov.in
59	Thresiamma George	Nirmala College, Kerala	tresasunny@gmail.com
60	L.D. Jadhav	Shivaji University - Kolhapur	ldjadhav.phy@gmail.com
61	Kitheri Joseph	IGCAR, Kalpakkam	joskit@igcar.gov.in
62	R. Raja Madhavan	IGCAR, Kalpakkam	rajam@igcar.gov.in
63	Sadhana Suresh Rayalu	NEERI - Nehru Marg, Nagapur	s_rayalu@neeri.res.in
64	Dayamoy Banerjee	BARC - Mumbai	dayabanerjee@gmail.com
65	Bhaskar Kumar Sen	BARC - Mumbai	bksen@barc.gov.in
66	Vrinda Borker	Dhempe College, Goa	borkarpp@yahoo.com
67	K.V. R. Murthy	Phys Dept, Baroda	drmurthykvr@yahoo.com
68	Raja Kishor Lenka	BARC - Mumbai	rklenka@barc.gov.in
69	Vimal Kumar Jain	BARC - Mumbai	jainvk@barc.gov.in
70	B. Viswanathan	IIT, Madras	bviswanathan@hotmail.com
71	Chetan Prakash Kaushik	BARC - Mumbai	cpk@barc.gov.in
72	Sanjay Kumar	BARC - Mumbai	sanjayk@barc.gov.in
73	Daisy Joseph	BARC - Mumbai	djoseph@barc.gov.in
74	Aparna Banerjee	BARC - Mumbai	aparnab@barc.gov.in
75	B. S. Naidu	BARC - Mumbai	snaidu@barc.gov.in
76	Srirupa Mukherjee	Chemistry Division, BARC	srirupam@gmail.com
77	Rakeshkumar P. Thakkar.	Reliance Industries, Gujarat	rpt8875@gmail.com
78	J. Udhayakumar	BARC, Mumbai	udhayam@barc.gov.in
79	Jyostna S. Thakur	C.R. Thakur & C.J. College, New Panvel	thakurjyostna@gmail.com
80	Tanmay Kumar Ghorai	Bajkul Milanimahavidyalaya, W.B	tanmay.ghorai66@gmail. com
81	Rajeev Joshi	Shivaji University, Kolhapur	rajeev_sj@yahoo.com
82	Amrut Sadashio Lanje	Dr. Ambedkar College, Chandrapur, M.S	amrut.lanje@gmail.com
83	Monica Katiyar	IIT,Kanpur	mk@utk.ac.in
84	Sarat Chandra Das	Salipur College, Orissa	ctkscd@gmail.com
85	Maibam Aken Singh	Imphal College, Imphal	aken_maiban@yahoo.com
86	Nabakumar Pramanic	IIT, Kharagpur	pramanik_naba@yahoo. co.in
87	Seema Maheshwari	MDS Univ., Ajmer, Rajasthan	seemamaheshwari2007@ rediffmail.com
88	Samidha Saxena	Devi Ahilya University, Indore	samidha.saxena@gmail.com
89	Hrudananda Jena.	IGCAR, Kalpakkam	hnje@igcar.gov.in
90	Sanjiv Kumar	NCCCM, BARC- Hyderabad	sanjucccm@rediffmail.com
91	Rajeshkumar M. Patel.	M.S. University, Baroda	patel.rajeshkumar@ rediffmail.com

Memb. No.	Name	Affiliation	E-mail
92	N. Sivarajasekar	Kongu Engg. College, Erode	sivarajasekar@gmail.com
93	K. Nagarajan.	IGCAR, Kalpakkam	knag@igcar.gov.in
94	S.K. Sali.	FCD, BARC	sksali@barc.gov.in
95	Rajesh V. Pai.	FCD, BARC	pairajesh007@gmail.com
96	S.K. Rakshit.	PDD, BARC	swarup-kr@rediffmail.com
97	Vivek Kumar Pilania	NIT, Tiruchirapalli	vpilania2008@gmail.com
98	A.R. Phani.	Nano-Ram	arp@nano-ram.org
		lechnologies,	
00	L D. Singh	vijayanagar Imphal Collogo, Imphal	laitang@vahaa aa in
100	L.n. Jiliyii Shadia Hatamia	Forgueson College	
100		Pune	
101	Jayshree Ramkumar	ACD, BARC	jrk@barc.gov.in
102	S.K. Gupta	TPPED, BARC	drgupta@barc.gov.in
103	A.P. Mishra	H.S. Gour University,	apmishrasagar@gmail.com
104	G Panneer Selvam	Sagar IGCAB Kalnakkam	selvam1988@gmail.com
105	Prasanta Jana	IGCAR, Kalnakkam	prasanta jana@rediffmail
100			com
106	Maitri Mapa.	NCL, Pune	m.maitri@gmail.com
107	Sunil Sabharwal	BARC - Mumbai	sunsab@barc.gov.in
108	Ratikanta Mishra	BARC - Mumbai	mishrar@barc.gov.in
109	Yogesh Kumar Sharma	University of Delhi, Delhi	yk_sharma2004@yahoo. com
110	Ziley Singh.	BARC - Mumbai	zsingh@barc.gov.in
111	Smruti Dash.	BARC - Mumbai	smruti@barc.gov.in
112	Pradeep Samui	BARC - Mumbai	Praddepsamui@gmail.com
113	Madhab Chandra Rath	BARC - Mumbai	madhab@barc.gov.in,
114	R.K. Mishra	Chemistry Division, BARC	mishrrk@gmail.com
115	Vivekanand Dubey	BARC - Mumbai	vdubey@barc.gov.in
116	P. Bhavani	Anna University,	bhavaniPerumal4@gmail.
117	D. Sangeetha.	Anna University,	sangeetha@annauniv.edu
118	B Vinodh	Anna University Chennai	vinoth6482@amail.com
119	Rharati Panigrahy	IIT Bombay	hharatinanigrahy@iith ac in
120	Meera Venkatesh	BABC - Mumbai	meera@harc.gov.in
120	Ashutosh Dash	BARC - Mumbai	adash@harc.gov.in
122	Remani babu	BARC - Mumbai	r-manolkar@rediffmail.com
123	Ivianoikar Sanjay Kumar Saxona	BARC - Mumbai	snr1991@yahoo.com.in
134	Rubel Chakravarty	BARC - Mumbai	rubelc@barc.gov in
125	Shvamala S. Gandhi	BARC - Mumbai	sgandhi@barc.gov.in
126	Ramu Ram	BARC - Mumbai	ramuram harc gov in
127	Soumitra Das	BARC - Mumbai	soumitra@barc.gov.in
128	Nital R. Panchal	Gujarat Univ.	nital panchal@vahoo.co.in
		Ahmedabad	
129	Chetna C. Chauhan.	Gujarat Univ., Ahmedabad	chetumakwana@gmail.com
130	Harjinder Kaur.	Gujarat Univ., Ahmedabad	hr_ss_in@yahoo.com
131	Usha Pal.	Gujarat Univ., Ahmedabad	ushapal@rediffmail.com
132	Shobhana K. menon.	Gujarat Univ., Ahmedabad	shobhanamenon07@gmail. com

Memb. No.	Name	Affiliation	E-mail
133	Gaurang M. Patel.	Gujarat Univ., Ahmedabad	baps.gaurang@gmail.com
134	Meitram Niraj Luwang	Manipur Univ., Imphal	nirajmeitram@gmail.com
135	Dinesh K. Patel	Chemistry Division, BARC	dineshpatel25@gmail.com
136	Satish J. Sharma	Dept. of Elec., RTM, Nagpur	sjsharma@rediffmail.com
137	Suresh S. Umare	Dept. of Chem., VNIT, Nagpur	ssumare@rediffmail.com
138	Ashok Arya	BARC - Mumbai	ashokarya@gmail.com
139	Nitin Labhsetwar	NEERI - Nehru Marg, Nagapur	nk_labhsetwar@neeri.res.in
140	Shashwati Sen	BARC - Mumbai	shash@barc.gov.in
141	Shovit Bhattacharya	BARC - Mumbai	shovitb@rediffmail.com
142	Manmeet Kaur	BARC - Mumbai	manmeet@barc.gov.in
143	Raman Kumar Mishra	BARC - Mumbai	mishrark@barc.gov.in
144	Virendra Kumar	BARC - Mumbai	vkumar@barc.gov.in
145	S.P. Ramnani	BARC - Mumbai	ramnani@barc.gov.in
146	K.A. Dubey	BARC - Mumbai	dubeyabhinav@rediffmail. com
147	Jayashree Biswal	BARC - Mumbai	jbiswal@barc.gov.in
148	Vishwabharati Vilas Malkar	BARC - Mumbai	13vishu@gmail.com
149	Nalawade Pradnya Parshuram	BARC - Mumbai	14pradnya@gmail.com
150	Jasmine Annajothi Jacob	BARC - Mumbai	jasminebarc@gmail.com
151	Jayita Bhattacharjee	BARC - Mumbai	jayita@barc.gov.in
152	Sanjay C. Gadkari	BARC - Mumbai	gadkari@barc.gov.in
153	Devidas B. Naik	BARC - Mumbai	dbnaik@barc.gov.in
154	S. Chandra- mouleeswaran	BARC - Mumbai	chandru@barc.gov.in
155	Ajay Kumar Patra	BARC - Mumbai	apatra@barc.gov.in
156	Sanu S. Raj	BARC - Mumbai	sanusraj@yahoo.com
157	Smt. Sanjukta A. Kumar	BARC - Mumbai	sanjukta@barc.gov.in
158	Jitendra Nuwad	BARC - Mumbai	nuwad@barc.gov.in
159	Sangeeta J. Keny	BARC - Mumbai	sankeny@barc.gov.in
160	Rakesh R. Shukla	BARC - Mumbai	rakesh@barc.gov.in
161	Vinila V. Bedekar	BARC - Mumbai	vinila3@rediffmail.com
162	Sayed Farheen Nasir Hussain	BARC - Mumbai	farheen_sayed7@yahoo. com
163	Pooja P Sawant	BARC - Mumbai	ppsawant@barc.gov.in
164	Sandeep Chavan	Aditya Birla Science & Technology Centre, Mumbai	sandeep.chavan@ adityabirla.com
165	Ravi Joshi	BARC - Mumbai	ravii@barc.gov.in
166	Mrinal R. Pai	BARC - Mumbai	mrinalr@barc.gov.in
167	Poulomi Mukheriee	BARC - Mumbai	poulomi81@qmail.com
168	Deepak Tvagi	BARC - Mumbai	dtvaqi@barc.gov.in
169	Ananya Verma	VSB, HWB, Anushakti Nagar	ananya_barc@rediffmail. coom
170	Sriparna Chatterjee	TIFR - Mumbai	sriparna251@gmail.com
171	Mohit Tyaqi	BARC - Mumbai	tyagi@barc.gov.in
172	Prasuna Koshy	BARC - Mumbai	pkoshy@barc.gov.in
173	D.G. Desai	BARC - Mumbai	dgdesai@barc.gov.in

Memb. No.	Name	Affiliation	E-mail
174	S.D. Samant	Institute of Chemical Technology - Mumbai	samantsd@yahoo.com
175	K.M. Garodkar	Shivaji University - Kolhapur	kmg-chem@unishivaji.ac.in
176	S.R. Patil	Shivaji University - Kolhapur	srp_fsl@rediffmail.com
177	Bhattar Swaminatha Laxman	Shivaji University - Kolhapur	slbhattar@gmail.com
178	Srimanth Kagne	NEERI - Nehru Marg, Nagapur	skagne82@yahoo.com
179	Keka r. Chakraborty	VECC - Kolkata	kekarc@veccal.ernet.in
180	B.H. Mehta	University of Mumbai, Mumbai	b1p1n_281050@yahoo.com
181	N.L. Sonar	BARC - Tarapur	aakash3010@rediffmail.com
182	V.K. Yadav	BARC - Tarapur	vkyadav.1841@rediffmail. com
183	Vaishali De	BARC - Tarapur	vaishali_1074@yahoo.com
184	Amreesh Chandra	IIT - Kharagpur	achandra@phy.iitkgp. ernet.in
185	Shiv Govind Singh	BARC - Mumbai	shivgovind_singh143@ yahoo.com
186	Manoj Kumar	BARC - Mumbai	mkjangir@barc.gov.in
187	Dimple P. Dutta	BARC - Mumbai	dimpled@barc.gov.in
188	N. L. Singh	University of Baroda, Vadodara	singhnl_msu@yahoo.com
189	Dinesh K. Kanchan	University of Baroda, Vadodara	d_k_kanchan@yahoo.com
190	Prashant K. Mehta	University of Baroda, Vadodara	pkmehta_phy@yahoo.co.in
191	Ranjan Mittal	BARC - Mumbai	rmittal@barc.gov.in
192	M.S. Kulkarni	BARC - Mumbai	kmukund@barc.gov.in
193	D.R. Mishra	BARC - Mumbai	devesh22@yahoo.com
194	N.S. Rawat	BARC - Mumbai	naru@barc.gov.in
195	P. Pramanik	III - Kharagpur	pramanik1946@gmail.com
196	Kamanani Venugopalan	BARC - Mumbai	rvg@barc.gov.in
197	Jyoti Prakash	BARC - Mumbai	jprakash@barc.gov.in
198	Jagannath Deiendre kumer	BARC - IViumbai	ssai@barc.gov.in
199	sharma	DANC - WUMBA	rajenura@barc.gov.m
200	Nishant N. Patel	BARC - Mumbai	nnpatel@barc.gov.in
201	Siddhartha kolay	BARC - Mumbai	siddharthakolay@yahoo. co.in
202	Yamini Sharma	Feroze Gandhi College, Raibareli	yamini_2001@rediffmail. com
203	Chetan J. Panchal	University of Baroda, Vadodara	cjpanchal_msu@yahoo.com
204	Sisir Kumar Sarkar	BARC-Mumbai	sisirchhaya@gmail.com
205	Charu Dwivedi	BARC-Mumbai	cdwivedi@barc.gov.in
206	Chetan P. Shah	BARC-Mumbai	chetanshah9@rediffmail. com
207	Pallavi S. Page	BARC-Mumbai	pallavipage@gmail.com
208	Bhupesh B. Kalekar	BARC-Mumbai	bhupkal@barc.gov.in
209	Naina Raje	BARC-Mumbai	nraje@barc.gov.in
210	Darshana A. Acharekar	BARC-Mumbai	darshanaacharekar@yahoo. com
211	Patil Vishwanath Dhamba	C.K. Thakur A.C.S. College, Panvel	vishvanathpatil@yahoo.com
212	M.R. Gonal	BARC-Mumbai	mrgonal@barc.gov.in
213	Debasis Sen	BARC-Mumbai	debasis@barc.gov.in

Memb. No.	Name	Affiliation	E-mail
214	Jitendra bahadur	BARC-Mumbai	jbahadur@barc.gov.in
215	Ashok K. Ganquli	IIT. Delhi	ashok@chemistrv.iitd.ernet.in
216	Sharif Ahmad	Jamia Millia Islamia.	sharifahmad imi@vahoo.
210		New Delhi	co.in
217	Tokeer Ahmad	Jamia Millia Islamia, New Delhi	tokeer.ch@jmi.ac.in
218	Hirendra Nath Ghosh	BARC-Mumbai	hnghosh@barc.gov.in
219	S.V.G.V.A. Prasad	A.J. Kalasala, Andhra Pradesh	dr.svgvaprasad@gmail.com
220	S. Khare	Devi Ahilya University, Indore	kharesavita@rediffmail.com
221	Rajendra Chokhare	Devi Ahilya University, Indore	rchokhare@yahoo.co.in
222	Tenson Antony	Devi Ahilya University, Indore	tensonantony@rediffmail. com
223	Suresh M. Chopade	BARC-Mumbai	csuresh@barc.gov.in
224	Kamal P. Chaudhari	BARC-Mumbai	kamalc@barc.gov.in
225	Alpa y. Shah	BARC-Mumbai	salpa@barc.gov.in
226	Manoj Kumar Pal	BARC-Mumbai	mpal@barc.gov.in
227	nisha kushwah	BARC-Mumbai	knisha@barc.gov.in
228	Liladhar Kumbhare	BARC-Mumbai	liladhar@barc.gov.in
229	Prasad P. Phadnis	BARC-Mumbai	phadnisp@barc.gov.in
230	Amey Wadawale	BARC-Mumbai	ameypw@barc.gov.in
231	Vinita Grover Gupta	BARC-Mumbai	vinita@barc.gov.in
232	S.Kannan	BARC-Mumbai	skannan@barc.gov.in
233	Gunadhor S. Okram	UGC-DAE / Indore	okram@csr.ernet.in
234	H.D. Juneja	Nagpur University, Nagpur	hd_juneja@yahoo.com
235	Gatiwant Kumar Mallik	BARC-Mumbai	gatiwant@barc.gov.in
236	Arun Pratap	M.S. University, Baroda	apratapmsu@yahoo.com
237	P. Sujatha Devi	CGCRI, Kolkata	psujathadevi@gmail.com
238	Sanhita Majumdar	CGCRI, Kolkata	mailid_sm@yahoo.com
239	Venu H Mankad	Bhavnagar University, Gujarat	venu.mankad@gmail.com
240	Sanjeev K. Gupta	Bhavnagar University, Gujarat	skgupta.physics@gmail. com
241	P.K. Jha	Bhavnagar University, Gujarat	prafullaj@yahoo.com
242	G. Buvaneswari	VIT University, Vellore	gopalbhu@yahoo.com
243	Madhvesh Pathak	VIT University, Vellore	mpathak2000@yahoo.com
244	A. Anand Prabhu	VIT University, Vellore	aprabu21@yahoo.com
245	Manmohan kumar	BARC-Mumbai	manmoku@barc.gov.in
246	Avinash S. Pente	BARC-Mumbai	pavinash@barc.gov.in
247	Parag Rama Wavale	BARC-Mumbai	pwavale@barc.gov.in
248	Manoranjan Ghosh	North Bengal Science Centre, Silliguri	mano.snb@gmail.com
249	Chinnakonda S. Gopinath	NCL, Pune	cs.gopinath@ncl.res.in
250	K. Sivaranjani	NCL, Pune	s.kumarsrinivasan@ncl. res.in
251	Soumyaditya Mula	BARC-Mumbai	smula46@yahoo.com
252	B.T. Thaker	VNS Gujarat University, Surat	btthaker1@yahoo.co.in
253	Sourabh K. Patel	VNS Gujarat University, Surat	saurabh.silvinu@gmail.com
254	Parameswar K. Iyer	IIT Guwahati, Guwahati	pki@iitg.ac.in

Memb. No.	Name	Affiliation	E-mail
255	Dhanraj Tukdoji Masram	University of Delhi, Delhi	dhanraj_masram27@ rediffmail.com
256	Priya Dasan K.	VIT University, Vellore	kpriyadasan@yahoo.com
257	Rakesh Sharma	BARC-Mumbai	rakeshs@barc.gov.in
258	Archana Sharma	BARC-Mumbai	arsharma@barc.gov.in
259	Hirakendu Basu	BARC-Mumbai	hirak@barc.gov.in
260	R.K. Singhal	BARC-Mumbai	rsinghal@barc.gov.in
261	S.S. Bhoga	RTM Nagpur	msrl1@hotmail.com
262	Anushree P. Khandale	RTM Nagpur University, Nagpur	anushri.khandale@gmail. com
263	Kalpana Ramdas Naqde	RTM Nagpur University, Nagpur	kalpana.nagde@gmail.com
264	Ananda Shamrao Hodage	BARC-Mumbai	sanjayanand2007@gmail. com
265	S.M.Yusuf	BARC-Mumbai	smynsnt@barc.gov.in
266	Shanker Ram	IIT, Kharagpur	sram@matsc.iitkgp.ernet.in
267	Ajit Dattatray Phule	IIT, Kharagpur	phule.ajit@gmail.com
268	B. Susrutha	IIT, Kharagpur	susrutha.ma@gmail.com
269	Manoranjan Behera	IIT, Kharagpur	mano.silicon@gmail.com
270	Prasanna A.A.	IIT, Kharagpur	aap13_athma@rediffmail. com
271	Trisha Karan	IIT, Kharagpur	karantrisha@gmail.com
272	Arundhati Sengupta	IIT, Kharagpur	arundhati176@gmail.com
273	Akhtar Jahan Siddiqa	IIT, Kharagpur	akhtar.mtech@gmail.com
274	Susmita Misra	IIT, Kharagpur	misra.susmita@gmail.com
275	Akshay Jayant Chinchalikar	BARC - Mumbai	akshay.chinchalikar@gmail. com
276	Debes Ray	BARC-Mumbai	debes_ray@rediffmail.com
277	V.K. Aswal	BARC-Mumbai	vkaswal@barc.gov.in
278	N.B Patel	V.N.S.G. University, Surat	drnavin@satyam.net.in
279	K. Sivasankar	VIT University - Vellore	cuttisiva@gmail.com
280	Jitendra Shankerlal Parekh	Shree Jayendrapuri Arts& Science College-Gujrat	-
281	Pratesh.J. Shah	Shri J.P. Arts & Science College. Bharuch	acticarbad1@sancharnet.in
282	Nitinkumar Bhailalbhai Patel	Shri J.P. Arts & Science College. Bharuch	-
283	N.C. Desai	Bhavnagar University, Gujarat	dnisheeth@rediffmail.com
284	J.P. Mehta	Bhavnagar University, Gujarat	jpm1569@yahoo.co.in
285	D.R. Godhani	Bhavnagar University, Gujarat	drgodhani@yahoo.com
286	Chetankumar K. Modi	Bhavnagar University, Gujarat	chetank.modi1@gmail.com
287	Tejas P. Joshi	Bhavnagar University, Gujarat	tejas2709@gmail.com
288	N. Kumar	BARC-Mumbai	nkumar_barc@yahoo.com
289	M.V. Suryanarayana	CCCM, Hyderabad	suryacccm@rediffmail.com
290	0.D. Jayakumar	BARC-Mumbai	odjaya@barc.gov.in
291	Manoj Nalliath	BARC-Mumbai	nmanoj@barc.gov.in
292	Atindra Mohan Banerjee	BARC-Mumbai	atinmb@barc.gov.in
293	Seemita Banerjee	BARC-Mumbai	seemira@barc.gov.in

Memb. No.	Name	Affiliation	E-mail
294	Palash Kumar Manna	BARC-Mumbai	pkmanna@barc.gov.in
295	G. P. Das	IACS, Kolkata	gourpdas@gmail.com
296	Sudha	Delhi College of Engineering , Delhi	sudha1320@gmail.com
297	R. Nagarajan	University of Delhi, Delhi	rnagarajan@chemistry. du.ac.in
298	Sitharaman Uma	University of Delhi, Delhi	suma@chemistry.du.ac.in
299	Nobel Tomar	University of Delhi, Delhi	nobeltomar@gmail.com
300	Vaishali Thakral	University of Delhi, Delhi	thakral.vaishali@gmail.com
301	Epsita Ghanti	University of Delhi, Delhi	epsitaghati@gmail.com
302	Mamta Kharkwal	University of Delhi, Delhi	mamtachem@yahoo.co.in
303	Vinod Kumar	University of Delhi, Delhi	vinod7674@gmail.com
304	Jyoti Singh	University of Delhi, Delhi	jsingh@chemistry.du.ac.in
305	A.G. Kumbhar	BARC-Mumbai	agk@barc.gov.in
306	Sindhunil Barman Roy	Raja Ramanna Centre - Indore	sbroy@rrcat.gov.in
307	Maulindu Kumar Chattopadhyay	Raja Ramanna Centre - Indore	maulindu@rrcat.gov.in
308	Kirankumar R. Surati	S.P. University - Gujrat	kiransurati@yahoo.co.in
309	Saurabh S. Soni	S.P. University - Gujrat	soni-b21@yahoo.co.in
310	Kartik N. Shinde	RTM Nagpur University - Nagpur	kartik_shinde@rediffmail. com
311	Pankaj Poddar	National Chemical Laboratory, Pune	p.poddar@ncl.res.in
312	S.J. Dhoble	RTM Nagpur University - Nagpur	sjdhoble@rediffmail.com
313	N.S. Dhoble	Sevadal Mahila Mahavidyalaya, Nagpur	nsdhoble@rediffmail.com
314	Purav M. Badani	BARC-Mumbai	purab_1986@yahoo.co.in
315	Manishkumar P. Patel	Sardar Patel University - Gujarat	patelmanish1069@yahoo. com
316	Raghavendra Yellampalli	BARC-Mumbai	yraghavendra321@gmail. com
317	M.B. Kakade	BARC-Mumbai	mkakade@barc.gov.in
318	S.K. Srivastav	Manipur University, Imphal	profsrivastava@gmail.com
319	S. Dorendrajit Singh	Manipur University, Imphal	dorendrajit@yahoo.co.in
320	M.M. Khandpekar	Birla College - Kalyan	dr_mmk1968@yahoo.com
321	Munish Pandey	K.M. Agarwal College - Kalyan	drmunishpandey@yahoo. com
322	Jyotsana Tiwari	Hill Spring International School, Kalyan	jyotsna_t1979@yahoo.com
323	Shirish B. Patel	K.G. Karjat College of ASC, Karjat	pshirishb1115@gmail.com
324	Shailesh S. Dongare	Birla College - Kalyan	shaileshdongare@yahoo. com
325	Smita S. Patil	Birla College - Kalyan	smita_p6@yahoo.co.in
326	S.G. Gourkhede	Bhavans College - Mumbai	s.gaurkhede@gmail.com

Memb. No.	Name	Affiliation	E-mail
327	Kamala Balasubramanian	G.M. Momin Women's College - Thane	kamala14_in@yahoo.com
328	Tarannum Aziz Shaikh	G.M. Momin Women's College - Thane	-
329	Jayashree S. Thakre	G.M. Momin Women's College - Thane	jaya_thakre@yahoo.co.in
330	Jigyasa P. Dave	Navyug Science College, Surat	-
331	Rajendra Thakor Bhai Vashi	Navyug Science College, Surat	vashirajedra@yahoo.co.in
332	Kumar Trupti Ajitsinh	Navyug Science College, Surat	-
333	Patel Pravinkumar Chandulal	Navyug Science College, Surat	-
334	Pragna D. Vashi	Navyug Science College, Surat	pdvashi@rediffmail.com
335	Pushpaben Rameshandra Tandel	Navyug Science College, Surat	dr.pushpabentandel@yahoo. co.in
336	Mallik G. M.	Navyug Science College, Surat	gmmalik2010@gmail.com
337	Contractor K. S.	Navyug Science College, Surat	drkcontractor@hotmail.com
338	Vijay A. Champaneri	B.K.M. Science College , Gujrat	vijay214219@yahoo.com
339	Nongmaithem Mohondas Singh	Mizoram University - Aizawl	nmdas08@yahoomail.com
340	Lalrosanga	Mizoram University - Aizawl	rsanga09@rediffmail.com
341	Alka B. Garg	BARC-Mumbai	alkabgarg@rediffmail.com
342	Meenakshi Sunder	BARC-Mumbai	msunder@barc.gov.in
343	Kothari D.C.	University of Mumbai	kothari.physics@gmail.com
344	Deepa Khushalani	TIFR - Mumbai	khushalani@tifr@res.in
345	M. Anitha	BARC, Mumbai	manitha@barc.gov.in
346	P.K.Pujari	BARC, mumbai	pujari@barc.gov.in
347	Sanap Kiran Khandu	Pune university, Pune	sanap30@gmail.com
348	S.C.Parida	BARC, Mumbai	sureshp@barc.gov.in
349	Rohan. A. Phatak	BARC, Mumbai	phatakrohan@yahoo.co.on
350	Debabrata Chatttaraj	BARC, Mumbai	debchem@barc.gov.in
351	Asok Goswami	BARC, Mumbai	agoswami@barc.gov.in
352	Ashok Kumar Pandey	BARC, Mumbai	ashokk@barc.gov.in
353	B.S.Tomar	BARC, Mumbai	bstomar@barc.gov.in
354	S.Jeyakumar	BARC, Mumbai	sjkumar@barc.gov.in
355	Mrinal Kanti Das	BARC, Mumbai	mrinal83@live.in
356	Durga Basak	IACS, Kolkata	sspdb@iacs.res.in
357	Sourindra Mahanty	CGCRI, Kokata	mahanty@cgcri.res.in
358	Kajendra N Basu	CGCRI, Kolkata	rajenbasu54@gmail.com
359	Mahesh Hiralal Patel	V.N.S.G. University, Surat	maheshgorani@gmail.com
360	Patil Rajendra Pandurang	Shivaji University, Kolhapur	patilraj_2005@rediffmail. com
361	P.P.Hankare	Shivaji University, Kolhapur	p_hankarep@rediffmail.com
362	Anushree Roy	IIT Kharagpur	anushree@phy.iitkg.ernet.in
363	Sangita Dhara Lenka	BARC, Mumbai	sangitadhara@rediffmail. com
364	Manjulata Sahu	BARC, Mumbai	manju@barc.gov.in
365	Santosh Manohar Bhoiane	BARC, Mumbai	santoshm@barc.gov.in

Memb.	Name	Affiliation	E-mail
366	Manoi Kumar	BARC, Mumbai	mksaks@vahoo.com
	Sharma	2,	
367	N.L.Misra	BARC, Mumbai	nlmisra@yahoo.com
368	Chinagandham Rajesh	BARC, Mumbai	crajesh@barc.gov.in
369	Suman Kalyan	Visva-Bharati,	kalyan_apu@yahoo.co.in
	Sahoo	Santiniketan, West	
270	A C Datal	Bengal	
370	A.S.Patel	College, Surat	aspatel63@yanoo.com
371	Patel Ketankumar	Navyug Science	ketankpatel14187@gmail.
272	Kantibhat Virol Povol	Volood Cuirot	
372	Shailash Khadahhai	Valsad, Guirat	raval-viral-04@yanou.cu.in
373	Zadafiva	vaisau , Gujiat	SildileSil701905@gilidil.com
374	Patil Devidas	R.L.college, Parola,	prof drpatil@yahoo.co.in
	Ramrao	Jalgoan	
375	A.V.R.Reddy	BARC, Mumbai	avreddy@barc.gov.in
376	G.P.Kothiyal	BARC, Mumbai	gpkothiyal@yahoo.co.in
377	K.Indira Priyadarsini	BARC, Mumbai	kindira@barc.gov.in
378	R.Vijayalakshmi	BARC, Mumbai	rvijaya@barc.gov.in
379	Niharendu Choudhury	BARC, Mumbai	niharc2002@yahoo.com
380	Sandin Kumar	IGCAR Kalnakkam	dr s dhara@gmail.com
000	Dhara		u.o.unuru@gmun.oom
381	Soumee Chabraborthy	IGCAR, Kalpakkam	soumee.chakraborty@gmail. com
382	Ranveer Kumar	Dr.Hari Singh Gour University, Sagar	ranveerssi@yahoo.com
383	Jerina Maieed	BARC, Mumbai	ierinamaiid@gmail.com
384	, Suman Rana	BARC, Mumbai	sumnsana@gmail.com
385	Shanta S Sharma	SIES Graduate School	shantashreekumar@gmail.
206	Saniou	of lechnology, Nerul	com
500	Sanjay		co.in
387	Arpita Pal	A.C.Patil College, Mumbai	arpitappal@rediffmail.com
388	Ram Avtar Jat	BARC, Mumbai	avtar@barc.gov.in
389	Subrata Chattopadhyay	BARC, Mumbai	schatt57@gmail.com
390	Selvakumar Javaprakasam	BARC, Vashi, Navi Mumbai	j.maselva@gmail.com
391	Pintu Kumar Kundu	BARC, Mumbai	pintukumar2004@yahoo.
			co.in
392	Debashree Manna	BARC, Mumbai	dmanna@barc.gov.in
393	Tapan K Ghanty	BARC, Mumbai	tapang@barc.gov.in
394	Vilas Ramdas Chumbhule	NCL, Pune	vr.chumbhale@ncl.res.in
395	Sandesh	Birla college of	jaysandesh@gmail.com
	Vinayakrao	Arts, Science and	
396	Dayunaye Pradnya I Prahhu	K I Somaiya College of	ninrahhu@rediffmail.com
550	ya o r rabilu	Science & Commerce, Mumbai	Plana and a communication
397	Sugandha Srikant	K.J.Somaiya College of	drshetye21@rediffmail.com
	Shetye	Science & Commerce, Mumbai	
398	Rashmi Chauhan	D.A.V.College, Kanpur	chauhanrasmi@gmail.com
399	Arvind Tripathi	Chunniganj, Kanpur	tripathiarvind@yahoo.co.in
400	Chandra Nath Patra	BARC, Mumbai	chandra.patra@gmail.com
401	Brindaban Modak	BARC, Mumbai	bmodak@barc.gov.in

Memb. No.	Name	Affiliation	E-mail
402	Chitra Kamath	K.J.Somaiya college of science & commerce , vidyavihar	drchitrakamath@gmail.com
403	Archana Uttamrao Chavan	Shivaji University - Kolhapur	chavan-au@yahoo.co.in
404	Bhavana Thakur	BARC, Mumbai	bhawana_bhanupratap@ yahoo.co.in
405	Sahera S Patel	Sardar Patel University - Gujarat	swamibhavin@yahoo.com
406	Prabhakar shankar navarkar	A.D.A, S.V.A.C, M.S.College, Palghar,	-
407	Suhas Prakash Janwadkar	A.D.A, S.V.A.C, M.S.College, Palghar,	suhas.janwadkar@gmail. com
408	Shirish Pitale	A.D.A, S.V.A.C, M.S.College, Palghar,	shirishpitale@yahoo.com
409	S.V.Godbole	BARC, Mumbai	shri_godbole@yahoo.co.in
410	Nandkumar Dattatrya Dahale	BARC, Mumbai	nandkumardahale@yahoo. co.in
411	Dhruva Kumar Singh	BARC, Mumbai	dksingh@barc.gov.in
412	M.K.Kotekar	BARC, Mumbai	mkotekar@gmail.com
413	Meera S Keskar	BARC, Mumbai	meerakeskar@yahoo.com
414	Veena L Khilnani	K. J. Somaiya college of science & commerce, Mumbai	veenakhilnani@rediffmail. com
415	katari vasundhara	BARC Mumbai	Vasundharakatari@gmail. com
416	priyanka das	BARC Mumbai	priyankajuhem@rediffmail. com
417	Gautham kumar dey	BARC Mumbai	gkdubey@barc.gov.in
418	Kanhu charan Barick	BARC Mumbai	kcbarick@gmail.com
419	A.C.Sahayam	ECIL (PO), Hyderabad	sahayamac@hotmail.com
420	Salil Verma	BARC Mumbai	salilvarma@redimail.com
421	Patel Gaurangkumar shivabhai	M S Univ. of Baroda, Vadodara	guru16686@gmail.com
422	Rakhi khandelwal	Govt. Mahila Engineering College, Ajmer	rakhi.gweca@gmail.com
423	V. Jeseentha Rani	Loyola College, Chennai	jeseentha@gmail.com
424	Anup k ghosh	BHU, Varanasi	anupkg66@gmail.com
425	Sanjeev kumar	M S Univ. of Baroda, Vadodara	dvksanjeev@gmail.com
426	Hemant P. Soni	M S Univ. of Baroda,Vadodara	drhpsoni@yahoo.co.in
427	Vinayak kumar singh	M S Univ. of Baroda,Vadodara	vks.msu@gmail.com
428	K.C.Sajjan	Veerashaiva college, Bellary	kcsajjan23@yahoo.com
429	Muhammad faisal	PES school of Engineering, Bangalore	faismuhammad@gmail.com
430	G.krishanamoorthy	Central Leather Research Institute, Chennai	krishnamoorthyganesh@ yahoo.com
431	Rijith.S	Sree Narayana college, Kannar, Kerala	rijithsreenivas@gmail.com
432	Asit parija	Salipur College, Orissa	asitparija2k8@yahoo.com
433	Vikas jivottam	PES`s S.R.S.N College	vikjsp@rediffmail.com
	pissurlekar	of arts & science, ,Goa	

Memb. No	Name	Affiliation	E-mail
434	kimkholhing lunkim	Manipur University, Manipur	kim_lunkim@yahoo.com
435	Naorem arunkumar singh	Manipur University, Manipur	aknaorem@gmail.com
436	Nityanand chaubey	University of Allahabad, Allahabad	nchaubey_au@rediffmail. com
437	Narayana sharma	BTM Layout, Bangalore	narayana.sharma@gmail. com
438	seram pramodini devi	Manipur University, Manipur	pramodiniseram@rediffmail. com
439	Prasanna S.Ghalsasi	M.S. University, Baroda, Vadodara	prasanna.ghalsasi@gmail. com
440	Chhatrapati parida	Orissa University of Agriculture and Technology, Orissa	sivaji_1976@yahoo.co.in
441	Parthiv mukundkumar trivedi	Ushanagar Soc., Vadodara	parthiv_trivedi2006@yahoo. co.in
442	V.Jayathirtha rao	Indian Institute of Chemical Technology, Hyderabad	jrao@iiet.res.in
443	Remya devi p.s	BARC, Mumbai	remyadevips@yahoo.co.in,
444	Charu lata dube	IIT, Delhi	charu_dubey@rediffmail. com
445	Sayed khasim	PES school of Engineering, Bangalore	syed.physics@gmail.com,
446	D. Srimaha Vishnu	IGCAR, Kalpakkam	dsvishnu@igean.gov.in
447	Nahakpam santhibala devi	Manipur University, Imphal	abenahakpam@rediffmail. com
448	Nimalini moiranɑthem	Manipur University, Imphal	nima_moirangthem@ rediffmail.com
449	T.H.Goswami	DMSRDE, Kanpur	thgoswami@yahoo.co.uk
450	Longjamjaideva singh	Manipur University, Imphal	jaideva.longjam@gmail.com
451	Pranjal kalita	IOWA State University, USA	pkhalita.ncl@gmail.com
452	Vidhyadutta m.s.verenkar	Goa University, Goa	vmsv@rediffmail.com
453	Tanuja p parulekar	S.I.W.S., Mumbai	tanujaparulekar@gmail.com
454	Girdhar joshi	Analytical science division, Gujarat	gdcsmcri@gmail.com
455	Varsha p brahmkhatri	M.S. University of Baroda, Vadodara	varshachem@yahoo.co.in
456	Ghanshyam L Jadav	CSMCRI , Bhavnagar, Gujarat	jadav.ghanshyam@gmail. com
457	Chirantan Roy Choudhury	West Bengal State University, W.B	crchoudhury2000@yahoo. com
458	K.S.Nagaraja	Loyola College, Madras	ksnagaraja@gmail.com
459	Amitabha Acharya	IIT-Bombay, Powai	amitabhachem@gmail.com
460	Rimpi Dawar	IGCAR	rimpi.dawar@gmail.com
461	Ambrose Ashwin Meluin	TIFR, Mumbai	ashwinmelvino8@gmail. com
462	Radhe shyam ji	IIT Bombay, Powai	rsj@iitb.ac.in
463	Balasaheb bapu chandanshive	Tata Institute of Fundamental Research, Colaba	bchandanshive4@gmail. com
464	Y.sunitha	NCCCM, BARC- hyderabad	sunibarc@gmail.com
465	Raj kumar mishra	Mizoram University - Aizawl	rkmishramzu@yahoo.com

Memb. No.	Name	Affiliation	E-mail	
466	Surjit konwer	Tezpur University, Assam	ksurajit27@gmail.com	
467	lbetombi soibam	Manipur University, Imphal	ibetombi96@gmail.com	
468	Santosh Waman kulkarni	K.M. Agarwal College - Kalyan		
469	Sudhir kapur	BARC, Mumbai	sudhirk@barc.gov.in	
470	Ridhima chadha	BARC, Mumbai	ridhima@barc.gov.in	
471	Sandip kumar nayak	BARC, Mumbai	sknayak@barc.gov.in	
472	K.G.Girija	BARC, Mumbai	kgiirija@barc.gov.in	
473	Bedse R.D	BARC, Mumbai	bedse@barc.gov.in	
474	L. Robindro Singh	Pachhunga University college, Mizoram University	robinlaishram@gmail.com	
475	Sureeti Pratima Ratilal	V.N.S.G. University, Surat	pjriya@rediffmail.com	
476	S. Ramanathan	BARC, Mumbai	sramanathan1953@gmail. com	
477	Kolekar Sanjay Subrao	Shivaji University - Kolhapur	kolekarss2003@yahoo.com	
478	Jambhale Chitra Laxman	Sangola College, Sangola	cljambhale@yahoo.com	
479	Sandeep Verma	IIT, Kanpur	sverma@iitk.ac.in	
480	S.K. Bandyopadhaya	VECC-Kolkata	skband@vecc.gov.in	
481	Ajay Kumar Himanshu	VECC-Kolkata	himanshu_ak@yahoo.co.in	
482	Raghunath acharya	BARC, Mumbai	racharya@barc.gov.in	
483	Gaurang Shah	Cadila pharmaceutical Itd, Ahmedabad	gshah1975@yahoo.co.in	
484	Patel Kalpesh Balvantbhai	Joganinagar, Surat	sarvam.polymers@gmail. com	
485	Sangita D Kumar	BARC Mumbai	sangdk@barc.gov.in	
486	Sangeeta N Kale	Defence Institute of Advanced Technology, Pune	sangeetakale@diat.ac.in	
487	M. C. Chattopadhyaya	University of Allahabad, Allahabad	mc46@rediffmail.com	
488	Sunaina Devi	University of Allahabad, Allahabad	sunaina_ecsl@rediffmail. com	
489	Atul Kumar Kushwaha	University of Allahabad, Allahabad	atulkk2008@gmail.com	
490	Neha Gupta	University of Allahabad, Allahabad	neha.evs07@gmail.com	
491	Rahul Kumar	Pratapgarh, U.P	rahulkumarchem@gmail. com	
492	Raj Mani	University of Allahabad, Allahabad	rajmanichemistry@gmail. com	
493	Sudeep Halder	Naini, Allahabad	sudeep1132@gmail.com	
494	Vriddhi Nigam	University of Allahabad, Allahabad	vriddhi_enviornment@ rediffmail.com	
495	Lal Jee Yadhav	Colonelganj Inter College, Allahabad	laljeey@gmail.com	
496	Sharda Sundaram Sanjay	Christain college, Allahabad	sharda100@rediffmail.com	
497	D.K. Maity	BARC, Mumbai	dkmaity@barc.gov.in	
498	Devendra Pratap Rao	D.A.V.College, Kanpur	dvendraprataprao@yahoo. com	
499	P. V. Anantha padmanabha	BARC, Mumbai	pvananth@barc.gov.in	

Memb.	Name	Affiliation	E-mail	
INO.	Charry D. Vataa	Ihunihumuala Callaga	rluates @ushes som	
500	Charu K. Vatsa	Mumbai	rkvatsa@yanoo.com	
501	Anuyuna Padhi	BARC, Mumbai	padhi532@gmail.com	
502	Amlan Kumar Das	Modi Institute of Technology, Sikar, Rajasthan	amlan_snigdha@yahoo.com	
503	Prathibha Sunil Agrawal	Hislop college, Nagpur	pratibha3674@gmail.com	
504	Mamta S Wagh	Kamla Nehru MV, Nagpur	mamta1852@yahoo.com	
505	Sunil.L. Dhaire	Science college, Maharashtra	dahire.sunil08@gmail.com	
506	N ramesh babu	NIT, Tiruchirapalli	rameshrohith@gmail.com	
507	Balchandra M Bhanage	ICT, Matunga, Mumbai	balchandra_bhanage@ yahoo.com	
508	Kshama Kundu	BARC, Mumbai	kshamaroy@yahoo.com	
509	Raghvendu Pathak	Pachhunga University college, Mizoram University	rppuc31@yahoo.com	
510	Anjali patel	M S Univ. of Baroda, Vadodara	aupatel_chem@yahoo.com	
511	P D Babu	BARC, Mumbai	pdbabu1@gmail.com	
512	Anjali N Rahatgaonkar	IOS, Nagpur	anjali_rahatgaonkar@yahoo. com	
513	Raksha P Dhankar	Sadar Patel Mahavidyalaya, Chandrapur	rakshadhankar@rediffmail. com	
514	Vibha M Nikose	IOS, Nagpur	vibha_nikose@yahoo.co.in	
515	Kushal R Lanjewar	IOS, Nagpur	kusahallanjewar@gmail.com	
516	Mahesh Krisnaroa Gaidhane	IOS, Nagpur	maheshgaidhane83@gmail. com	
517	Nitin Kawaduji Longadge	IOS, Nagpur	nitinlongadge@gmail.com	
518	M.V. Balarama Krishna	BARC ,Hyderabad	mvbalaramakrishna@ rediffmail.com	
519	Mahendra Mohanlal Lakadawala	NIT, Surat	auxin_rnd@gmail.com	
520	S C Raghavendra	PES School of Engineering, Banglore	sc.raghu@gmail.com	
521	Sudhanshu K .Deshpande	BARC, Mumbai	skdesh@csr.res.in	
522	J. V. Ramana	BARC, Hyderabad	jramana1@rediffmail.com	
523	Abdul Kareem Parchur	Banaras Hindu Univ., Varanasi	kareemskpa@hotmail.com	
524	Bhanu Raman	K. J. Somaiya College of Science & Commerce , Mumbai	drbhanu.raman@gmail.com	
525	Pika Jha	Solid State Physics Laboratory, Delhi	pikajha@sspl.drdo.in	
526	Neeraj kumar Gupta	BARC, Mumbai	triton2010@gmail.com	
527	Athawale Anjali Anand	Univ. of Pune, Pune	agbed@chem.unipune.ac.in	
528	Vandana Swarnkar	Jiwaji Univ. Gwalior	soni.vandana7@gmail.com	
529	G. Ranga Rao	IIT Madras, Chennai	grroa@iitm.ac.in	
530	V. snehalatha	IGCAR, Kalpakkam	chem.vsl@gmail.com	
531	Santosh Sitaram Bhoir	BARC, Mumbai	santoshsbhoir@yahoo.com	
532	hemlata Vinod Khadilkar	BARC, Mumbai	hemalk@barc.gov.in	
533	Jayanthi S Kulkarni	BARC, Mumbai	drjayanthi1999@yahoo.com	
534	Adish taygi	BARC, Mumbai	adishchem@gmail.com	

Memb. No.	Name	Affiliation	E-mail	
535	Shreekrishna Govind Kulkarni	BARC, Mumbai	shreekrishna.g.kulkarni@ gmail.com	
536	Yogita Subhash Pable	BARC, Mumbai	yogip@barc.gov.in	
537	Prasanta Kumar Mohapatra	BARC, Mumbai	mapatra@barc.gov.in	
538	Deepak Rawat	BARC, Mumbai	rawatd@bar.gov.in	
539	Sangeeta Kishore	M S Univ. of Baroda, Vadodara	kishore.sangeeta@gmail. com	
540	Surendra Kumar Saini	Sitapura, Jaipur, Rajasthan	surendra1feb@gmail.com	
541	Rajesh M Kamble	Mumbai University, Mumbai	chemrajkam@yahoo.co.in	
542	Bhavna A Shah	VNS Gujarat University, Surat	bhavna606@gmail.com	
543	Sangeeta Adhikari	NIT, Rourkela	adhikari.sangeeta8@gmail. com	
544	Bharat kumar	IIT, Delhi	bharatchaubeydce@gmail. com	
545	Gohil S. Thakur	IIT Delhi	gohil_thakur08@yahoo.com	
546	Chirag B. Mistry	Narmad south Gujarat univ., Surat	cbmistry605gmail.com	
547	Archana Charanpahari	NIT, Nagpur	acharanpahari@gmail.com	
548	Ovhal Sheetal Dadasaheb	Univ. of Pune, Pune	sheetalovhal@yahoo.com	
549	Pragati Thakur	Univ. of Pune, Pune	prthakur@chem.unipune. ac.in	
550	Bhavana Gupta	IIT, Bombay, Mumbai	bgupta1206@gmail.com	
551	S. K. Ghosh	BARC, Mumbai	sghoshmawab@gmail.com	
552	Rajak Syed	BARC, Mumbai	rajak@barc.gov.in	
553	B J lokhande	Solapur University, Solapur	bjlokhandde@yahoo.com	
554	Ambare revanappa Chandrakan	Solapur University, Solapur	revanambare@gmail.com	
555	Surendra vithal khavale	Solapur University, Solapur	surendra_khavale@yahoo. com	
556	G K Nagaraja	Manglore University, Manglore	nagarajagk@gmail.com	
557	T.S.R. Ch. Murthy	BARC, Mumbai	murthi321@gmail.com	
558	R. Srinivasan	BITS Pilani, Hyderabad Campus, Hyderabad	rsvasan31@gmail.com	
559	P. K. Patro	BARC, Mumbai	pankajpatro@gmail.com	
560	T. Mahata	BARC, Mumbai	tsmahata@gmail.com	
561	Chayan Banerjee	BARC, Mumbai	chayan@barc.gov.in	
562	G. Jasmine Biswal	Mumbai University	jasmine.biswal09@gmail. com	
563	Johar Dey	North Eastern Hill University	johar_dey2006@yahoo.com	
564	Neelam Shivran	BARC, Mumbai	neel2k1@gmail.com	
565	Mohsin Jafar	BARC, Mumbai	mohsinj@barc.gov.in	
566	Bhagyashree K Kharwandikar	BARC, Mumbai	kbshree@barc.gov.in	
567	Dilip Kumar Mishra	Sikshya O Anusandhan University, Bhubaneswar	dilipiuac@gmail.com	
568	Swaroop Laxmi	Shri Ramdeobaba	swarooplaxmim71@gmail.	
	•	Kamala Nehru Coll. of Engg.,Nagpur	com	
569	Archana P. Gaikwad	BARC, Mumbai	ashirole@barc.gov.in	
570	K. Srinivasu	BARC, Mumbai	ksvasu@barc.gov.in	

Memb.	Name	Affiliation	E-mail	
INO.	K 0 D :			
5/1	K. C Bairwa	BARC, Mumbai	bairwa@barc.gov.in	
572	Joyeeta Tk. Mukherjee	BARC, Mumbai	makhopadhyaya.j@gmail. co.in	
573	K. P. Muthe	BARC, Mumbai	kpmuthe@rediffmail.com	
574	Amresh I Prasad	Ramnarain Ruia College, Mumbai	prasad_amresh@yahoo.com	
575	Anamika Singh	Dept. of Life Sciences., University of Mumbai	anamika.singh5@gmail.com	
576	K. R. S. Chandrakumar	BARC, Mumbai	krsc@barc.gov.in	
577	P. N. Pathak	BARC, Mumbai	ppathak@barc.gov.in	
578	Harshala J. Parab	BARC, Mumbai	harshprb@gmail.com	
579	Alok Samanta	BARC, Mumbai	alokk@barc.gov.in	
580	Mahesh Sundararajan	BARC, Mumbai	maheshsrajan@gmail.com	
581	Arup Kumar Pathak	BARC, Mumbai	akpathak@barc.gov.in	
582	Kaial Dhole	BARC, Mumbai	dhole@barc.gov.in	
583	Rumu Halder	BARC Mumbai	rumuhalder24feb@gmail	
000		Britto, mambal	com	
584	Pranesh Sengupta	BARC, Mumbai	praneshsengupta@gmail. com	
585	Vandana Pulhani	BARC. Mumbai	vanpulh@barc.gov.in	
586	K V Vivekananda	BARC Mumbai	kvivek18@gmail.com	
587	Dilin Kumar Paluru	BARC Mumbai	dilinkumar naluru@vahoo	
507	Champa Lal	DARC, Mumbai	co.in	
588	Cnampa Lai Prajapat	BARC, Mumbai	prajapat@barc.gov.in	
589	Abhishek Das	BARC, Mumbai	abhidas@barc.gov.in	
590	Kaushik Sanyal	BARC, Mumbai	kaushik.sanyal88@gmail.	
591	Santosh Kumar Gupta	BARC, Mumbai	santoshg@barc.gov.in	
592	Raghuveer V Kulkarni	BARC, Mumbai	ravik@barc.gov.in	
593	Juby K. Ajish	BARC, Mumbai	jubykuttan@gmail.com	
594	Krishan Kant Singh	BARC, Mumbai	singkrish@gmail.com	
595	Vishnu R Ajgaonkar	Mumbai University	vrajgaonkar@yahoo.com	
596	Sabir H Mashraqui	Mumbai University	sh mashraqui@yahoo.com	
597	Ashwini Kumar Srivastava	Mumbai University	akschbu@yahoo.com	
598	Anil V Karnik	Mumbai Universitv	avkarnik@vahoo.com	
599	Deep Prakash	BARC, Mumbai	deep.prakash1970@gmail	
600	Drohhudagai	PARC Mumbai	com	
000	Swapnil Anil		swaprili@uarc.gov.in	
601	K. D. Purohit	BAKC, Mumbai	rdp.nano@gmail.com	
602	Smita S. Sheelvantra	BARC, Mumbai	aksmita@barc.gov.in	
603	Apurav Guleria	BARC, Mumbai	aguleria@barc.gov.in	
604	A. K. Tiwari	BARC, Mumbai	annukt@barc.gov.in	
605	Madhusadan K. Bhide	BARC, Mumbai	bhidemak@yahoo.com	
606	G. Laxmi Narasimha Reddy	N.C.C.C/BARC, Hyderabad	glnr@cccm.gov.in	
607	Nilesh Laxman Dudwadadkar	BARC, Mumbai	nileshld@barc.gov.in	
608	Ariiit Sengunta	BARC, Mumbai	ariiita@barc.gov in	
600	Ashish Kumar	Indira Gandhi Centre	tuira In@gmail.com	
503	Singha Deb	for Atomic Research, Kalpakkam	ระสารแห่งอยู่มายแรงเป็	
		· · · · · · · · · · · · · · · · · · ·		

Memb. No.	Name	Affiliation	E-mail	
610	Abhijeet Mishra	Jamia Millia Islamia, New Delhi	abhijeetjmi@gmail.com	
611	G.Muralidharan	Gandhigram Rural Institute, Gandhigram	muralg@rediffmail.com	
612	Y. K. bhardwaj	BARC, Mumbai	ykbhard@barc.gov.in	
613	Mohd. Ubaidullah	Jamia Millia Islamia, New Delhi	mohdubaidullah2007@ gmail.com	
614	P. Pachamuthu	Anna University, Chennai	pachachem@gmail.com	
615	Nandita Maiti	BARC, Mumbai	nanbis@gmail.com	
616	Irfan Hussain Lone	Jamia Millia Islamia	irfanchem486@gmail.com	
617	A. Ajayghosh	CSIR-NIIST, Trivandrum	ajayaghosh@niist.res.in	
618	Tandrima Chaudhuri	Dr. B. N. Dutta Smriti Mahavidyalaya	tanchem_bu@yahoo.co.in	
619	J. Manjanna	Kuvempu University	jmanjanna@rediffmail.com	
620	V. Balaji	BARC F, Kalpakkam	vbalaji1764@gmail.com	
621	Dipika Sharma	Dayalbagh Educational Institute, Agra	dipika.sharma286@gmail. com	
622	Sumant Upadhyay	Dayalbagh Educational Institute, Agra	sumant.upadhyay@gmail. com	
623	N. Rajmuhon Singh	Manipur University	rajmuhon@yahoo.co.in	
624	Vijay kumar Netial Chaudhari	R.T.M.,Nagpur University	vj1784@gmail.com	
625	Ningthoujam	North Eastern Regional	ghanashyam2@gmail.com	
	Gnanasnyam Singn	and Technology,		
626	S. Jayakumar	Poosaripatti, Pollachi	sjayakumar.physics@gmail. com	
627	Jagendrakumar D. Punde	S. S. Girls College, Gondia	jagendrapund@gmail.com	
628	Sudhanshu Sharma	IIT, Gandhinagar	ssharma@iitgn.ac.in	
629	Bhoomika K. Joshi	KSV University	bhoomika7884@gmail.com	
630	M. A. Reddy	BARC, Hyderabad	mavreddy@rediffmail.com	
631	Smita Thosar	Sandoz Pvt. Ltd., Dighe, Kalwe	smitathosar@gmail.com	
632	Priyanka M. Shinde	Andheri, Mumbai	bhatpriyanka@rediffmail. com	
633	Deepak Pathania	Shoolini University, Solan	dpathania74@gmail.com	
634	Bhim Singh Rathore	Govt. P.G. college, Solan.	brathore66@yahoo.com	
635	P. N. Bhosale	Shivaji University, Kolhapur	p_n_bhosale@rediffmail. com	
636	Anithakumari Palavalara	BARC, Mumbai	anithakumari21_02@yahoo. co.in	
637	Raza Rasool	Jamia Millia Islamia, New Delhi	razarasool@gmail.com	
638	Sumaiya Hasnain	Jamia Millia Islamia, New Delhi	hasnain.sumaiya@gmail. com	
639	Arun kumar upadhay	Department of Applied science, Teerankar Mahaveer University,	up.arun@gmail.com	
		Morabad		
640	Rajan Francis Nicholas Ashok	Chemistry Department, K. V. College of Engg. Chinnakolam	ashokfnr@gmail.com	
641	Arun K Prasad	SND, MSG, IGCAR, Kalpakam	akp@igcar.gov.in	
642	Govind Mugesh	IPC Department, IISc, Banglore	mugesh@ipc.iisc.ernet.in	

Memb. No.	Name	Affiliation	E-mail	
643	Alok Awasthi	MPD, BARC	aawasthi@barc.gov.in	
644	C S Sundar	MSG, IGCAR, Kalpakam	css@igcar.gov.in	
645	Kulamani Parida	CSIR-IMMT, Bhuwaneshwar, Odisha	kmparida@immt.res.in	
646	Daya shankar pandey	Department of Chemistry, BHU, Vanarasi	depbhu@bhu.ac.in	
647	Rampal pandey	Department of Chemistry, BHU, Vanarasi	rpvimlesh@gmail.com	
648	Vinod Kumar Tiwari	Department of Chemistry, BHU, Vanarasi	tiwari_chem@yahoo.co.in	
649	Mrigendra Dubey	Department of Chemistry, BHU, Vanarasi	mrigendradubey@gmail.com	
650	Anup paul	Department of Chemistry, BHU, Vanarasi	kanupaul@gmail.com	
651	Ashish Kumar Singha Deb	Department of Chemistry, BHU, Vanarasi	ashish-chem.bhu@gmail. com	
652	Amit Kumar	Department of Chemistry, BHU, Vanarasi	aks87bhu@gmail.com	
653	Sujay mukhopadhyay	Department of Chemistry, BHU, Vanarasi	sujay.chemistry07@gmail. com	
654	Rakesh kumar Gupta	Department of Chemistry, BHU, Vanarasi	rakeshbhu.84@gmail.com	
655	Rajendra prasad Paitandi	Department of Chemistry, BHU, Vanarasi	r.paitandi@gmail.com	
656	Divya Kushwa	Department of Chemistry, BHU, Vanarasi	divya.kushwa30@gmail. com	
657	Roop Shibha singh	Department of Chemistry, BHU, Vanarasi	roopshibha22singh@gmail. com	
658	Arnab Biswas	Department of Chemistry, BHU, Vanarasi	arnabhdf@gmail.com	
659	Priyanka srivastava	Department of Chemistry, BHU, Vanarasi	priyankasrivastava0028@ gmail.com	
660	Arwind Mishra	Department of Chemistry, BHU, Vanarasi	arvindmisra2003@yahoo. com	
661	Syed Sibtay Razi	Department of Chemistry, BHU, Vanarasi	syedsibtayrazi@gmail.com	
662	Rashid Ali	Department of Che- mistry, BHU, Vanarasi	alirashid85@gmail.com	
663	Ramesh Chandra Gupta	Department of Chemistry, BHU, Vanarasi	rameshchembhu@gmail. com	
664	Anshu Dandia	Dept. Of Chemistry, University of Rajasthan, Jaipur	dranshudandia@yahoo.co.in	
665	Alka Sharma	Dept. Of Chemistry, University of Rajasthan, Jaipur	sharma_alka21@yahoo.com	

Memb. No.	Name	Affiliation	E-mail
666	Meenakshi Jain	Dept. Of Chemistry, University of Rajasthan, Jaipur	minimaharani@yahoo.com
667	Nihat Fahmi	Dept. Of Chemistry, University of Rajasthan, Jaipur	nighat.fahmi@gmail.com
668	Neeelima Gupta	Dept. Of Chemistry, University of Rajasthan, Jaipur	guptaniilima@gmail.com
669	Asha Jain	Dept. Of Chemistry, University of Rajasthan, Jaipur	aashajain27@gmail.com
670	Sanjiv Saxena	Dept. Of Chemistry, University of Rajasthan, Jaipur	saxenas348@rediffmail.com
671	R. V. Singh	Dept. Of Chemistry, University of Rajasthan, Jaipur	rusjpr@hotmail.com
672	Abhinav kumar	Department of Chemistry, University of Lucknow	abhhinavmarshal@gmail. com
673	Vinita sharma	Department of Chemistry, J. N. V. University, Jodhpur	drvsharma29@gmail.com
674	Pradeep k Sharma	Department of Chemistry, J. N. V. University, Jodhpur	drpkvs27@yahoo.com
675	Shobha Sharma	Department of Chemistry, J. N. V. University, Jodhpur	
676	Pryanka purohit	Department of Chemistry, J. N. V. University, Jodhpur	pvkinetics@gmail.com
677	Sarabjot Singh	Dept. of Nanotechnology, SGGSW University, Fatehgarh Sahib	isarabjot@gmail.com
678	Anurag Choudhary	Department of Chemistry, J. N. V. University, Jodhpur	anurag051981@gmail.com
679	Amita Dhariwal	Department of Chemistry, J. N. V. University, Jodhpur	anandamita.amita@gmail. com
680	Om Prakash	Department of Chemistry, J. N. V. University, Jodhpur	doctorop29@gmail.com
681	R. K. London Singh	Department of Chemistry, D. M. College of Science, Imphal	london_ningthemcha@ yahoo.com
682	Deepak Kumar Padhi	CMC department, CSIR-IMMT, Bhuwaneshwar	dkpadhi7@gmail.com
683	Satyabadi Martha	C&MC Dept. IMMT, Bhuwaneshwar	satyabadi_martha@yahoo. com
684	Gobinda Chandra Behera	C&MC Dept. IMMT, Bhuwaneshwar	bcgobin@gmail.com
685	Niranjan Biswal	C&MC Dept. IMMT, Bhuwaneshwar	niranjan8572@gmail.com
686	Gajendra kumar Pradhan	C&MC Dept. IMMT, Bhuwaneshwar	gkpchem@gmail.com
687	Surya kanta Rana	C&MC Dept. IMMT, Bhuwaneshwar	surjya.nou@gmail.com
688	Goutam Kumar Naik	C&MC Dept. IMMT, Bhuwapeshwar	gkn.chem@gmail.com

Memb.	Name	Affiliation	E-mail	
110.				
689	K. Hemalata Keddy	Bhuwaneshwar	k.hemalatareddy@gmail. com	
690	Gopa Mishra	C&MC Dept. IMMT, Bhuwaneshwar	gopachemistry@gmail.com	
691	Susanginee Nayak	C&MC Dept. IMMT, Bhuwaneshwar	susanginee@gmail.com	
692	Amtul Nashim	C&MC Dept. IMMT, Bhuwaneshwar	amtulnokt@gmail.com	
693	Soumyashree Pany	C&MC Dept. IMMT, Bhuwaneshwar	soumya.pany84@gmail.com	
694	Lagnamayee Mohapatra	C&MC Dept. IMMT, Bhuwaneshwar	mlagnamayee@gmail.com	
695	G. Bishwa Bidita Varadwaj	C&MC Dept. IMMT, Bhuwaneshwar	lidita9@gmail.com	
696	Mitarani Sahoo	C&MC Dept. IMMT, Bhuwaneshwar	mitarani85@gmail.com	
697	Binita Nanda	ITER, SOA University.	binita.driems@gmail.com	
698	Pravat Manjari Mishra	CSIR-IMMT, Bhuwaneshwar	pravatmarjani@immt.res.in	
699	Anuj k Jain	IIT Bombay	jain_anij04@yahoo.com	
700	B. N. Jagatap	Chemistry Group, BARC	bnj@barc.gov.in	
701	Sumit	SSPD, BARC	sumit.mehan@gmail.com	
702	A. Selvan	Vel Tech High Tech Engg. College, Avadi	selvanabraham@gmail.com	
703	B. M. Tripathi	PMD, BARC	biranchitripathi@gmail.com	
704	Trupti Mohanty	PMD, BARC	Trupti121@gmail.com	
705	Chandrashekar Shankar	PMD, BARC	kcshankar@gmail.com	
706	Amit Kaushal	PMD, BARC		
707	Krishna Ramadurai	PMD, BARC	krishna.ramadurai@gmail. com	
708	K. V. Ravi Kanth	PMD, BARC	kanthkvr@gmail.com	
709	Naraynan Raman	PMD, BARC	naraynan.iyengar@gmail. com	
710	Rajesh Kumar Kharwar	BRIT, BARC	rajeshkharwar.ch@gmail. com	
711	Suresh Kumar Kailasa	S. V. National Institute of Technology, Surat	sureshkumarchem@gmail. com	
712	Vivek Polshettiwar	TIFR, Mumbai	vivekpol@yahoo.com	
713	B. N. Rajasekhar	AMPD, RRCAT, Indore	bnrs@rrcat.gov.in	
714	Rashmi Singh	RRCAT, Indore	rashmi@rrcat.gov.in	
715	Poonam Pahari	BARC	poonam.pahari@gmail.com	
716	V. G. Subramanian	University of Hyderabad	gvsp@uohyd.ernet.in	
717	Shyam Kishor	J. V. College, Barant, U. P.	shyam387@gmail.com	
718	Mrs. Jyotirmayee Mohanty	RPCD, BARC	jyotim@barc.gov.in	
719	Anand S. Burange	Johanson and Matthey	asgburange@gmail.com	
720	Deepak Satoskar	Johanson and Matthey	deepak.satoskar@matthey. com	
721	Rajesh Parishwad	RSC, UK	parishwadr@rsc.org	
722	Philip Earis	RSC, UK	earisp@rsc.org	
723	Sumanta Mukherjee	PDD, BARC	sumanta.mukherjee20@ gmail.com	
724	Debasis Mal	IGCAR, KALPAKKAM	debasismal@gmail.com	
725	Arati D. Sonawane	BARC-MUMBAI	aratib@barc.gov.in aruboss23@gmail.com	
726	Raj Ganesh S. Pala	IIT-KANPUR	rpala@iitk.ac.in	

Memb. No.	Name	Affiliation	E-mail	
727	Nitin M Shah	Arts, Science and Commerce College, SURAT	nitinshah12@gmail.com	
728	M. K. Lande	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad	Mkl_chem@yahoo.com	
729	S. G. Shankarwar	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad	shankarwar_chem@yahoo. com	
730	Chavan Laxmikant Dnyaneshwar	Jawaharlal Nehru Engg. College, Aurangabad	chavan@rediffmail.com	
731	Shraddha P. Vaidya	F1/2, MIDC, Phase I, Dombivli (E), Thane	shraddhavaidya85@gmail. com	
732	Md. Niharul Alam	Visva-Bharati (central University), Shantiniketan	mdniharulalam@gmail.com	
733	Neetu Jha	ICT,Matunga, Mumbai	jha.neetu@gmail.com	
734	Virendra Gomase	Bioinfo Publications	Gomase.viren@gmail.com	
735	Sebastian C. Peter	JNCASR, JAKKUR, BANGALORE	sebastiancp@jncasr.ac.in	
736	Kanishka Biswas	JNCASR, JAKKUR, BANGALORE	kanishka@jncasr.ac.in	
737	Ujjal K. Gautam	JNCASR, JAKKUR, BANGALORE	ujjalgautam@gmail.com	
738	Swapnil Prabhulkar	The Institute of Science, Mumbai	swapnil_science92000@ yahoo.co.in	
739	Kanchana Venkatakrishnan	IIT, HYDERABAD	kanchana@iith.ac.in kanchana.vaithee@gmail. com	
740	Suprabha Nayar	Biomaterials Group, National Metallurgical Laboratory, Burmamines, Jamshedpur	suprabha.nayar@gmail.com	
741	Soumaya Bhattacharya	Biomaterials Group, National Metallurgical Laboratory, Burmamines, Jamshedpur	soumyabhattacharya302@ gmail.com	
742	A. K. Varshney	University of Rajasthan, Jaipur	anilakv123@rediffmail.com	
743	Sarita Varshney	University of Rajasthan, Jaipur	saritavarshney@rediffmail. com	
744	Vimla Choudhary	JNVU, JODHPUR	dr.vimlachoudhary@gmail. com	
745	Dipen Piyushkumar Shah	Gujarat University, Navrangpura, Ahmedabad	dipenshah@live.com	
746	Hemam Jenee Devi	Manipur University	hemamjenee@gmail.com	
747	Chanambam Victory Devi	Pachhunga University College, Aizwal, Mizoram	victorychanambam@yahoo. co.in	
748	Jejiron Maheshwari Baruah	School of Technology, NEHU, Shillong, Meghalaya	jejiron.baruah@gail.com	
749	Sanjay Kumar Mishra	SSPD, BARC, Mumbai	skmsspd@barc.gov.in	

Memb.	Name	Affiliation	E-mail	
750	Kamal Dhungel	Dept. of Basic Sciences and Social Sciences, NEHU, Shillong	kamaldhungel108@gmail. com	
751	Ningombam Goutam Singh	Phougakchao Ikhai Bazar, Bishnupur, Manipur	ningombam12@gmail.com	
752	Thokchom Taru Taru Chanu	Manipur University, Canchipur, Imphal West, Manipur	thtarutaruchanu@gmail.com	
753	Goutam Chakraborty	LPTD, BARC, Mumbai	gchak@barc.gov.in	
754	Vaishali Anandrao Sawant	Shivaji University, Kohlapur	vas_tech@unishivaji.ac.in	
755	Seema Manchanda	Birla College of Arts, Science and Commerce, Kalyan	seema231106@gmail.com	
756	Amitava Patra	Indian Association for the cultivation of Science, Jadavpur, Kolkata	msap@iacs.res.in	
757	Vijay Parewa	University of Rajasthan, Jaipur	parewavijay.parewa@gmail. com	
758	Amit Sharma	University of Rajasthan, Jaipur	amitsharmaru@gmail.com	
759	Vilas Ramdas Khairnar	Birla College of Arts, Science and Commerce, Kalyan	khairnar.vilas@gmail.com	
760	Rajesh Kumar Meena	University of Kota, Kota, Rajasthan	1988rajeshmeena@gmail com	
761	Baishnab Charan Prusty	Dept. of Chemistry, Salipur College, Salipur, Odisha	b.c.prusty.salipur@gmail. com bchemp@outlook.com	
762	Pushpal Ghosh	School of Chemical Science and Technology, Sagar	pushpalghosh27@gmail. com	
763	Thangjam Tejkumar Singh	DON BOSCO College, MARAM, Manipur	th_tejkumar@yahoo.co.in	
764	Pallavi Singhal	BARC, Mumbai	pallavisinghal1987@gmail. com	
765	Thiyam David Singh	National Institute of Technology, Imphal, Manipur	davidthiyam@yahoo.co.in	
766	Deepak Sukhadeo Rajmane	S.B.D. Mahavidyalaya, Atpadi, Sangli, Maharashatra	dsrajmane@rediffmail.com	
767	Sujit K. Ghosh	IISER, PUNE	sghosh@iiserpune.ac.in sghoshchem@gmail.com	
768	Saikat Kumar Seth	Mugberia Gangadhar Mahavidyalaya Bhuapatinagar, Purba Medinipur, West bengal	saikatim@yahoo.co.in	
769	Aabid Hussian Shalla	Islamic University of Science and Technology, Awantipora, Kashmir	sheenf@gmail.com	
770	Prakash R. Somani	Vijaynagar, Pune	psomani_cmetp@yahoo.com, psomani1@yahoo.com	
771	Savita P. Somani	Vijaynagar, Pune	pssomani@yahoo.com psomani1@yahoo.com	

Memb. No.	Name	Affiliation	E-mail	Memb. No.	Name	Affiliation	E-mail
772	lshant Chauhan	Sri Guru Granth Sahib World University, Fatehgarh Sahib	lshantchauhan20@gmail. com	784	Rakesh K. Sharma	Applied Chem. Dept., The M. S. University of Baroda, Gujarat	raksharmain@yahoo.co.in raksharmamsu@gmail.com
773	Sanchay Jyoti Bora	Pandu College, Guwahati, Assam	sanchay.bora@gmail.com	785	Shrikrishna Dattatray Sartale	Dept. of Physics, S. P. Pune University, Pune	sdsartale@physcis.unipune. ac.in
774	Goutam Kumar Kole	BARC, Mumbai	goutamk@barc.gov.in gkkole@gmail.com	786	Bandhan Saha	Chemistry Division, BARC	sahabandhansaha@gmail. com
775	Jadhav Shravan Yegu	DBF Dayanand College of Arts & Science,	shravanjadhav.chem@gmail. com	787	Samatha Bevara	Chemistry Division, BARC	samathahcu@gmail.com
776	Mahaian Kallanna	Solapur DBF Davanand College	Kimahaian8275@gmail.com	788	Sankara Rao Chappa	RCD, RLG, BARC	chsrchem@gmail.com
	Jnanoba	of Arts & Science, Solapur	nymanajanoz / o @ grinamoorn	789	Apurva Nandkumar Naik	RCD, RLG, BARC	apurvanaik2006@gmail.com
777	Abhishek Dadhania	P. D. Patel Institute of Applied Sciences Charusat- Changa,	abhishekdadhania@gmail. com	790	Manu Sikarwar	Dept. of Chemistry, Govt. P G College, Tonk, Rajasthan	smannu1975@gmail.com
778	Asar Ahmed	Gujarat Laxminarayan Institute	Asar.ahmed@gmail.com	791	Tapas Kumar Das	Chemistry Division, BARC	tapas.chem.in@gmail.com, tapasd@barc.gov.in
		of Technology, RTM Nagpur University,		792	K. Shitaljit Sharma	Chemistry Division, BARC	shitaljit123@gmail.com
779	Arunkumar	Dept. of Food	arunkselvam@gmail.com	793	Gawali Santosh Lala	Chemistry Division, BARC	gawalisantosh2030@gmail. com
	Paneerselvam	Packaging Tech., CSIR- Centra Tech. Res.		794	Pravin Ananda Mane	Chemistry Division, BARC	pravinmane21@yahoo.com
700	0.0.0.1			795	A. Shriniwas Rao	ChTD, BARC	ashriniwas@gmail.com
/80	C. A. Amarnath	Chemistry Div., BARC	caamar@gmail.com	796	Tushar Chandrakant Jagadale	TPD, BARC	tusharjagdale@gmail.com
781	Naorem Shanta Singh	Dept. of Phys, Nagaland University	naoremshanta@gmail.com	797	Nair Ramya Gopakumar	Chemistry Division, BARC	nair.ramya717@gmail.com
782	Navin P. Chikhaliya	Dept. of Chemsitry, Sardar Patel	navin13@gmail.com	798	Rawool Sushma Arjun	Chemistry Division, BARC	sushma.rawool23@gmail. com
783	N. Yainhaba	University, V. V. Nagar Dept. of Chem., D. M.	ningombam.v@gmail.com	799	Nadar Ashish Natarajan	Chemistry Division, BARC	ashishnadar111288@gmail. com
		College of Science, Imphal	angenbunky@gnuncom	800	Satya Kamal Chirauri	Physics Dept., Andhra University	satyakamal.ch@gmail.com

Printed by: Ebenezer Printing House Unit No. 5 & 11, 2nd Floor, Hind Service Industries Veer Savarkar Marg, Shivaji Park Sea-Face, Dadar (W), Mumbai - 400 028 Tel.: 2446 2632 / 2446 3872 Tel Fax: 2444 9765 E-mail: outworkeph@gmail.com

In this issue

	Feature articles	Page No.
1.	Hydrogen Storage Possibilities in Carbon Materials <i>B. Viswanathan and A. Ariharan</i>	1
2.	Application of Metal Hydride Systems for Hydrogen Storage Seemita Banerjee, Priyanka Ruz, Asheesh Kumar, C. G. S. Pillai	8
3.	Material Challenges in Renewable Hydrogen Production A.M. Banerjee, M.R. Pai, A.K. Tripathi and S.R. Bharadwaj	17
4.	Materialsof Construction for Iodine – Sulfur Thermochemical Process H. Z. Fani, S. Sujeesh, V. Nafees Ahmed, A. Shriniwas Rao, A. Sanyal	30
5.	Application of Membrane Technology in IS Thermochemical Cycle <i>Nitesh Goswami, A. K. Singha, Soumitra Kar, R.C. Bindal, P.K. Tewari</i>	35
6.	An Overview of Material Requirements for Copper-Chlorine Thermochemical Cycle: ONGC Energy Centre Perspective <i>D. Paroatalu</i>	43
7.	Design of Photoelectrohemical Materials Via Non-Native Nanostructures and their "Click" Assembly into Photoreactor <i>Dilip Kumar Behara, Sulay Saha, R. Babu, Malay Kumar Das,</i> <i>Sri Sivakumar and Raj Ganesh S Pala</i>	49
8.	Recent Trends in Material Development for Photoelectrochemical route of Solar Hydrogen Production <i>Sahab Dass, Vibha Rani Satsangi and Rohit Shrivastav</i>	59
9.	List of Life Members	65

Published by

Society for Materials Chemistry

C/o. Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 (India) Tel: +91-22-25592001, E-mail: socmatchem@gmail.com